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Figure 1. Architectural design of an improved ENC module.

Layers Input Shape Output Shape

Conv, LeakyReLU, IN 3 × 256 × 256 8 × 128 × 128
Conv, LeakyReLU, IN 8 × 128 × 128 16 × 64 × 64
Conv, LeakyReLU, IN 16 × 64 × 64 32 × 32 × 32
Conv, LeakyReLU, IN 32 × 32 × 32 64 × 16 × 16

Conv, LeakyReLU 64 × 16 × 16 64 × 8 × 8
AvgPooling 64 × 8 × 8 64 × 2 × 2

Flatten 64 × 2 × 2 256

Table 1. Detailed network architecture of the backbone for global
transformation and adaptive sampling.

In the supplementary material, we provide detailed net-
work architectures, more experimental comparisons and fu-
ture works.

1. Detailed Network Architecture
In order to ensure the generality of the proposed framework,
we use simple and effective network architectures without
bells and whistles.

In the pixel-wise transformation, we introduce an im-
proved version of exposure normalization and compensa-
tion (ENC) module to reduce the disparity between different
exposure features. The detailed structure is shown in Fig-
ure 1. Our ENC module first uses instance normalization
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Layers Input Shape Output Shape

FC 256 M
FC M 3N3

Reshape 3N3 3×N ×N ×N

Table 2. Architecture for predicting the 3D LUT. M and N denote
the number and dimension of the basis 3D LUTs, respectively. In
our experiments in the main text, M = 3 and N = 17.

Layers Input Shape Output Shape

FC, Split 256 Kx − 1,Ky − 1
Softmax Kx − 1,Ky − 1 Kx − 1,Ky − 1

Accumulation Kx − 1,Ky − 1 Kx,Ky

Cartesian product Kx,Ky Kx ×Ky

Table 3. Architecture for predicting the sampling grid. Kx and
Ky denote the sample size along the x- and y- axes directions,
respectively. In our experiments in the main text, Kx = Ky = 256.

to normalize the exposure to the exposure-invariant space.
Then, we integrate the normalized features with the origi-
nal features by channel attention in the channel dimension
only. Compared to the original ENC module [3], we re-
move spatial interactions, which result in a large number of
computations but limited performance gain.

For global transformation and adaptive sampling, we use
the same backbone to analyze the content of the input im-
age, which is the key to obtaining image-adaptiveness. The
detailed network architecture is listed in Table 1. Specif-
ically, the network employs only 5 convolutional layers to
obtain an holistic understanding of the image content. Sub-
sequently, we employ an adaptive average pooling layer and
a flatten operation to obtain a compressed contextual repre-
sentation.

For the prediction of 3D LUTs, we use 2 fully connected
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Figure 2. A failure case of our method for challenging scenes.

(FC) layers to accomplish this process, as shown in Table 2.
The first FC layer is used to predict the fusion weights.
The weights of the second FC layer represent the basis 3D
LUTs. After linear combination of the second FC layer, we
can get the final image-adaptive 3D LUT.

For the prediction of sampled grids, we use only one FC
layer to accomplish this process, as detailed in Table 3. We
use FC layers for the extracted contexts to obtain the sam-
pling intervals in the x- and y- axis directions. Then accu-
mulation, normalization and Cartesian product are applied
to obtain the final sampling coordinate points.

2. More Experimental Results
2.1. Comparisons on NIQE metric

In this subsection, we further employ the no-reference im-
age quality assessment metric NIQE to evaluate different
methods on the LCDP dataset. As shown in Table 4, our
method achieves the lowest NIQE scores, which means a
higher perceptual quality and naturalness compared to ex-
isting state-of-the-art methods.

2.2. Exposure Consistency Comparisons

In this subsection, we perform an exposure consistency
comparison with the state-of-the-art methods, as shown in
Figure 3. The first and second rows represent the enhance-
ment results for the underexposed and overexposed images,
respectively. The third row represents the error map of the
two corresponding results. It can be clearly seen from Fig-
ure 3 that our method is able to generate results with more
favorable illumination. In addition, for input images with
different exposures, our method is able to recover more
similar exposure levels and achieve better exposure consis-
tency.

2.3. More Results on UHD images

In this subsection, we show some visualization results on
UHD images from the original SICE [2] dataset. Most of
the methods fail to process UHD images due to out-of-
memory. We provide visual comparison results with the
image-adaptive 3D LUT method [5] as presented in Fig-
ure 4 . Compared with the global transformation of 3D
LUTs, our method is able to produce more pleasing visual

results with better local contrast in some local regions with
the help of the collaborative transformation framework.

2.4. More Visual Comparisons.

In this subsection, we provide more visual comparison re-
sults with the state-of-the-art methods. Specifically, Fig-
ure 5 and Figure 6 present the results on the SICE [2]
dataset. Figure 7 and Figure 8 show the visual results on
the MSEC [1] dataset. Figure 9 and Figure 10 present the
results on the LCDP [4] dataset. The input images cover a
variety of lighting conditions. Our proposed method is able
to reconstruct satisfactory visual results with reasonable il-
lumination and harmonious colors. These competitive vi-
sual results demonstrate the superiority of our method.

2.5. Runtime on CPU.

In this section, we report the running time of our method
on the CPU in Table 5. It can be clearly seen that even
on CPUs, our method strikes a better balance between effi-
ciency and performance compared to other state-of-the-art
methods.

3. Limitations and Future Work
We will continue to strive for higher image quality in the
future. Figure 2 illustrates a failure case of our method for
challenging scenes. For extreme exposure regions where
structural information is lost, transformation-based meth-
ods may be difficult to recover. In the future, we will ex-
plore generative models to handle such challenging situa-
tions. In addition, to ensure the generality of the proposed
framework, we only borrowed simple CNN networks as
the backbone. More effective architectural designs, such as
Transformer, deserve further investigation. We also plan to
extend our approach to video processing and consider both
temporal and spatial operations.
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Methods HE CLAHE LIME WVM RetinexNet URetinexNet DRBN SID MSEC ZeroDCE

NIQE 3.7327 3.5745 3.4205 3.3705 3.8659 3.4242 3.7554 4.2326 3.4499 3.2817

Methods Zero-DCE++ RUAS SCI PairLIE ENC-SID ENC-DRBN CLIP-LIT FECNet LCDPNet Ours

NIQE 3.3543 3.8307 3.4913 3.4725 3.2771 3.2343 3.3858 3.6465 3.2723 3.2123

Table 4. Quantitative results of different methods on the LCDP dataset in terms of the NIQE metric.

Methods DRBN SID MSEC ZeroDCE Zero-DCE++ SCI PairLIE ENC-SID ENC-DRBN CLIP-LIT FECNet LCDPNet Ours

Time(s) 3.7683 2.1927 1.5569 0.9783 0.0496 0.0371 5.7661 3.1936 5.6600 4.7009 4.1605 2.0874 0.7203

Table 5. The average runtime for 10 images when processing for 1024× 1024 images on an Intel i7-6800K CPU.
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Figure 3. Exposure consistency comparison with state-of-the-art methods. The first and second rows represent the enhancement results for
underexposed and overexposed images, respectively. The third row shows the error map of the two corresponding results.
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Figure 4. Visual comparison with state-of-the-art methods on UHD images from the SICE dataset.
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Figure 5. Visual comparison with state-of-the-art methods on underexposed images from the SICE dataset.
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Figure 6. Visual comparison with state-of-the-art methods on overexposed images from the SICE dataset.
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Figure 7. Visual comparison with state-of-the-art methods on underexposed images from the MSEC dataset.
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Figure 8. Visual comparison with state-of-the-art methods on overexposed images from the MSEC dataset.
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Figure 9. Visual comparison with state-of-the-art methods on underexposed images from the LCDP dataset.
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Figure 10. Visual comparison with state-of-the-art methods on under- and overexposed scenes from the LCDP dataset.
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