
Supplementary material
SURE: SUrvey REcipes for building reliable and robust deep networks

This supplementary material contains the following sections:
• Section 1: Ablation study of λmix and λcrl for the RegMixup [15] loss and Correctness Ranking Loss (CRL) [14].

• Section 2: Ablation study of τ for the Cosine Similarity Classifier (CSC) [5, 9].

• Section 3: Comparison of the performance of different uncertainty estimation methods on CIFAR10-LT and CIFAR100-LT
[12] with imbalance factor 10.

• Section 4: More details about the definition of Area Under the Receiver Operating Characteristic Curve (AUROC) [2] and
False Positive Rate at 95% True Positive Rate (FPR95) as mentioned in Section 4.1 (c.f. line 388) in our paper.

• Section 5: More results of failure prediction under distribution shift.

• Section 6: Ablation study of different re-weighting maps.

1. Impact of different λcrl and λmix in RegMixup [15] loss and Correctness Ranking Loss (CRL)
[14]

In this section, we present the results of varying the parameters λcrl and λmix in the loss function of SURE. The experimental
results, obtained using a ResNet18 [6] backbone and summarized in Table 1, indicate that different datasets require different
optimal weights. Notably, all experiments across various backbones consistently utilized the same values of λcrl and λmix in
our paper. We determined the optimal settings as 0.5 for both λcrl and λmix on CIFAR10 [12], 1 for CIFAR100 [12], and 2
for Tiny-ImageNet [13]. Specifically, when we fine-tuned DeiT [17], we set λcrl to 0 and λmix to 0.2 across three datasets.
Particularly in our downstream task, we set λcrl to 0 and λmix to 1 when addressing the challenges of long-tailed distribution
data. And we set λcrl to 0.2 and λmix to 1 when learning with noisy labels.

2. Impact of different τ in Cosine Similarity Classifier (CSC) [5, 9]
In the same vein as the previous ablation study for λcrl and λmix, we also conducted an analysis of the cosine similarity
classifier temperature τ within the SURE framework. This study is detailed in Table 2. For CIFAR10 [12] and CIFAR100
[12], the best-performing temperature value was found to be τ = 8, while for Tiny-ImageNet [13], a higher temperature of
τ = 16 yielded superior results. Specifically, when we fine-tuned DeiT [17], we set the temperature of τ = 16 on three
datasets. Note that across all our downstream tasks, we consistently applied a temperature of τ = 8 .

3. More results of failure prediction on CIFAR10-LT and CIFAR100-LT [12]
We evaluate the performance of failure prediction under imbalanced data distribution. The Acc. and AURC are provided
in Table 3 for imbalance factor IF = 10. We find that even under imbalanced data distribution, our SURE still significantly
outperforms other approaches of failure prediction across different datasets and backbones, demonstrating its robustness
under more challenging settings.
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Ratios CIFAR10 [12] CIFAR100 [12] Tiny-ImageNet [13]
Acc. ↑ AURC ↓ Acc. ↑ AURC ↓ Acc. ↑ AURC ↓

Baseline(MSP) 95.41 ± 0.15 4.89 ± 0.96 74.91 ± 0.25 74.87 ± 0.24 63.27±0.04 134.87±1.14
CRL weight λcrl

0.1 95.47±0.19 4.60±0.26 75.47±0.46 75.02±2.99 63.32±0.23 135.62±2.56
0.2 95.33±0.26 4.13±0.64 76.04±0.78 73.03±2.04 63.44±0.16 131.62±1.37
0.5 95.33±0.14 3.98±0.20 75.49±0.39 71.84±1.49 64.86±0.02 124.63±0.49
1 95.13±0.16 4.67±0.40 76.10±0.43 69.05±2.48 65.29±0.14 117.33±1.08
2 93.99±0.08 6.71±0.28 75.30±0.36 72.40±1.48 65.59±0.18 116.61±0.47
5 91.58±0.18 13.29±0.33 71.98±0.55 91.42±2.15 62.66±0.17 136.03±0.94

RegMixup regularization weight λmix

0.1 95.76±0.08 5.81±0.98 77.59±0.67 66.49±2.09 65.42±0.40 123.37±1.00
0.2 95.85±0.11 4.74±0.41 77.35±0.39 66.59±0.77 65.59±0.20 122.26±0.67
0.5 96.23±0.10 4.68±0.47 77.21±0.52 66.32±1.96 66.26±0.21 116.50±2.31
1 95.96±0.29 7.04±0.92 77.64±0.85 63.88±5.22 66.00±0.22 117.79±1.49
2 96.03±0.07 7.03±0.45 77.13±0.31 66.56±0.43 66.26±0.12 113.40±1.31
5 95.83±0.23 6.17±1.74 77.52±0.95 63.40±6.22 65.40±2.06 119.34±12.49

Table 1. Ablation Study of hyper-parameters λcrl and λmix in the loss function of SURE. Experiments are implemented on CIFAR10,
CIFAR100 [12] and Tiny-ImageNet [13] datasets.

Ratios CIFAR10 [12] CIFAR100 [12] Tiny-ImageNet [13]
Acc. ↑ AURC ↓ Acc. ↑ AURC ↓ Acc. ↑ AURC ↓

Baseline(MSP) 95.41±0.15 4.89±0.96 74.91±0.25 74.87±0.24 63.27±0.04 134.87±1.14
cosine similarity classifier temperature τ

4 96.29±0.01 2.44±0.04 79.73±0.22 53.71±0.16 64.86±0.14 128.28±1.76
8 96.65±0.07 2.13±0.03 80.37±0.07 48.20±0.73 68.26±0.05 99.76±0.59
16 96.17±0.10 2.52±0.07 79.90±0.35 50.28±1.29 69.03±0.05 94.63±0.74
32 96.20±0.10 2.51±0.06 79.07±0.32 53.14±1.82 67.44±0.29 103.51±1.89

Table 2. Ablation Study of hyper-parameters τ in Cosine Similarity Classifier (CSC) of SURE. Experiments are implemented on
CIFAR10, CIFAR100 [12] and Tiny-ImageNet [13] datasets.

4. Definition of AUROC [2] and FPR95
AUROC The area under the receiver operating characteristic curve (AUROC) measures the area under the curve drawn by
plotting the true positive(TP) rate against the false positive(FP) rate.

FPR95 FPR95 is the abbreviation of FPR-at-95%-TPR that measures the false positive rate (FPR) = FP/(FP+TN) when
the true positive rate (TPR) = TP/(TP+FN) is 95%, where TP, TN, FP, and FN denotes true positives, true negatives, false
positives, and false negatives, respectively. It can be interpreted as the probability that an example predicted incorrectly is
misclassified as a correct prediction when TPR is equal to 95%.

5. More results of failure prediction under distribution shift
In this section, we present the detailed performances of each corruption in Figure 1. We can observe that SURE outperforms
the other methods in almost all corruption types. This consistent superiority across various corruption types indicates the
robustness of SURE.

6. Impact of different re-weighting maps
In this section, we investigate the impact of different re-weighting maps on our uncertainty-aware re-weighting strategy
in Table 4. Specifically, we explore four methods: exponential (exp), threshold, power, and linear. Let si represent the
confidence scores. We define these re-weighting methods with tuning parameters t, α, and p as follows:
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Backbones Methods
CIFAR10-LT [1] CIFAR100-LT [1]

IF=10 IF=10
Acc. ↑ AURC ↓ Acc. ↑ AURC ↓

MSP [8] 88.49±0.18 40.96±3.19 59.39±0.23 196.28±3.57
RegMixup [15] 91.28±0.15 17.74±0.99 62.51±1.13 156.56±4.06

CRL [14] 88.21±0.14 38.78±2.24 60.33±0.29 181.33±3.63
ResNet18 [6] SAM [3] 88.56±0.38 27.44±1.39 60.24±0.44 183.68±3.17

SWA [11] 90.37±0.15 20.88±0.90 63.86±0.11 157.43±1.63
FMFP [19] 90.46±0.06 18.55±0.35 63.20±0.44 153.88±1.91

SURE 92.65±0.11 14.68±0.86 66.83±0.38 122.18±0.93
MSP [8] 86.65±0.16 84.26±4.55 57.96±0.28 257.81±1.84

RegMixup [15] 89.53±0.30 26.75±0.39 61.75±0.08 200.65±4.04
CRL [14] 86.45±0.21 87.05±1.79 57.69±0.25 255.38±5.34

VGG16-BN [16] SAM [3] 88.24±0.51 40.77±3.57 59.17±0.48 223.72±6.66
SWA [11] 89.23±0.05 25.02±0.66 60.95±0.51 188.60±5.36
FMFP [19] 89.23±0.22 21.55±0.34 61.12±0.22 179.68±1.90

SURE 90.47±0.23 19.51±0.59 62.31±0.36 158.17±2.43
MSP [8] 87.75±0.53 37.94±7.71 58.61±0.03 225.57±2.51

RegMixup [15] 91.73±0.16 17.07±0.12 65.14±0.10 131.85±1.81
CRL [14] 88.11±0.21 38.65±1.47 60.06±0.15 188.90±3.69

DenseNetBC [10] SAM [3] 88.79±0.29 27.02±1.23 61.14±0.34 188.08±3.77
SWA [11] 90.76±0.40 16.77±1.06 64.52±0.75 149.15±5.80
FMFP [19] 90.72±0.49 15.80±1.37 65.62±0.24 136.10±1.03

SURE 91.76±0.23 13.72±0.72 65.34±0.08 130.95±2.23
MSP [8] 89.44±0.10 37.28±1.34 62.46±0.05 185.31±0.83

RegMixup [15] 92.44±0.29 14.66±1.96 65.99±0.60 144.91±3.02
CRL [14] 89.57±0.28 37.63±2.31 63.22±0.24 159.26±2.60

WRNet28 [18] SAM [3] 90.86±0.13 21.11±0.72 65.27±0.13 145.33±2.15
SWA [11] 92.17±0.27 12.70±0.83 68.73±0.17 122.27±1.09
FMFP [19] 92.04±0.07 11.35±0.17 69.12±0.40 111.44±1.31

SURE 93.91±0.01 9.40±0.41 70.92±0.27 102.64±1.85

Table 3. Comparison of the performance of failure prediction on CIFAR10-LT and CIFAR100-LT [1] with imbalance factor 10.
We keep 10% training data as the validation set to select the best model. The means and standard deviations over three runs are reported.
↓ and ↑ indicate that lower and higher values are better respectively. For each experiment, the best result is shown in boldface. AURC
[4] values are multiplied by 103 and all remaining values are in percentage. On datasets with long-tailed distributions, SURE outperforms
other methods in almost all cases.

• Exponential: The weights are defined using the exponential function:

weights = e−t×si

where t is a scaling factor affecting the influence of confidence scores.
• Threshold :

weights =

{
1.0− si, if si < α

0, otherwise

Here, α is the threshold value.
• Power: The weights are determined by raising the term to a power:

weights = (1.0− si)
p

In this case, p is the exponent applied to the term 1.0− si .
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Methods Acc.
w/o. re-weighting 87.72

exp
t = 0.5 89.73
t = 1 90.22
t = 2 88.96

threshold
α = 0.5 89.35
α = 0.6 89.50
α = 0.7 89.01
α = 0.8 89.60
α = 0.9 89.87

power
p = 2 89.82
p = 3 89.44
p = 4 89.60
p = 5 89.25
linear 89.60

Table 4. Impact of different re-weighting maps. We have investigated the impact of different re-weighting maps on our uncertainty-aware
re-weighting strategy on CIFAR10-LT [1] with an Imbalance Factor (IF) of 50. Based on our findings, ‘exp’ (exponential) method with
t = 1 was selected as the re-weighting map for all our long-tailed classification experiments.

• Linear: A linear relationship is used to calculate the weights:

weights = 1.0− si

This method directly subtracts the confidence scores from 1.0.
Based on the best result in Table 4, we choose “exp” (exponential) with t = 1 as the re-weighting map for all our long-tail
classification experiments.
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(a) AUROC
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(b) AURC

Figure 1. Comparison of the average AUROC [2] (higher is better) and AURC [2] (lower is better) on CIFAR10-C [7]. We choose
DenseNet [10] as the backbone and CIFAR-10 as the training set. The evaluation results are averaged across the images with 5 severity
levels under 15 types of corruption.
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