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Figure 7. Denoising procedure visualization with three different diversities. We align the denoising processes of background and
foreground for better visual effects. For each scene, we also provide its satellite top view in the upper-left corner with current locations.
Please use Adobe Reader / KDE Okular to see animations. Use the scroll to drag frames while the mouse is over the video. Leave the
current page and back to replay.

In this supplementary material, we provide further de-
tails (Sec. 6), present additional experiment results (Sec. 7),
and discuss the limitations of our method along with poten-
tial future directions (Sec. 8).

6. Additional details
OmniCity [18] video poses. All the videos in Fig. 1, Fig. 6,
and Fig. 7 use trajectories along the right side of the road.
The ground-view poses are at a height level of 2m, 15◦ pitch
facing the sky and zero roll, while bird-view poses are at a
height level of 10m, 15◦ pitch facing the road and zero roll.
Data augmentation. Since the number of scenes (∼5k) of
the HoliCity [45] dataset is not sufficient enough, we add
the following data augmentations during training. We ran-
domly flip the whole scene along the two horizontal axes,
while we also randomly rotate the scene around the verti-
cal axis. In addition, we perform Gamma correction on the
point cloud RGB ground truth, with a random γ value be-
tween 0.8 and 1.25.
Inference timing. The generation of the 3D sparse diffu-
sion models takes approximately 10 minutes for the whole
denoising process of a single scene. For the neural render-
ing phase, the inference takes around 1.6s per frame with a
resolution of 512×512.
Other related baselines. We did not include experiments
with Vid2Vid [38], WC-Vid2Vid [25] and Sat2Density [31]
due to the following reasons. Vid2Vid [38] has already ex-
hibited deficiencies in temporal consistency, as observed in
Sat2Vid [19]. WC-Vid2Vid [25], on the other hand, neces-

sitates semantic video input, which exceeds the scope of our
problem setting. Furthermore, Sat2Density [31] requires for
precise satellite-ground image correspondence, which is un-
available in the HoliCity [45] dataset.

7. Additional experiment results
Visualization of the denoising processes on the exemplary
scenes are presented in Fig. 7. In the initial seconds of the
videos, the transformation of texture from complete noise to
meaningful visual patterns is evident. Larger noise patches
are observed in the sky background, and the denoising pro-
cess exhibits stability due to the utilization of LDMs [32].
Multi-style generation examples are also shown in Fig. 7.
For each scene, we present three different diversities which
are denoised from different noise seeds. It is clear that our
model can generate different styles of texture for the same
geometry. We noticed that no matter how the style varies,
the number of floors of the generated building facade re-
mains similar (approximately 3m per floor) as long as the
building height is constant. Also, the style of the ground
floor is generally different from that of the higher floors,
which is also consistent with real-world buildings.
Supplementary experiments including additional qualita-
tive baseline comparisons and a qualitative ablation study,
are presented in Fig. 8 and Fig. 9, respectively. These fig-
ures serve as extensions of Fig. 4 and Fig. 5.
The inferior consistency of MVDiffusion [36] compared
to its original paper is evident. In addition to the overlap
ratio mentioned in Sec. 4.3, we believe this may also be
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Figure 8. Additional qualitative baseline comparison on the HoliCity [45] dataset. Our method produces higher-quality videos with
better temporal consistency compared to the baselines. Please use Adobe Reader / KDE Okular to see animations.

attributed to factors such as text prompt and depth detail.
MVDiffusion [36] utilizes long and diversified text prompts
to provide the network with rich scene information. To en-
sure a fair comparison with our approach and other base-
lines, we use a universal text prompt, which may increase
the difficulty of learning color information or detailed tex-
ture. As for the depth detail, the indoor depths in MVDiffu-
sion [36] exhibit high quality, even allowing for the recog-
nition and inference of object boundaries. In contrast, the
outdoor depths in HoliCity [45] appear more “flat” and lack
high-frequency details such as windows and facade deco-
rations. Thus, learning the mapping from geometry to ap-
pearance in the HoliCity dataset becomes more challenging
compared to the indoor scenarios in MVDiffusion [36].

8. Limitations and discussion

Although Sat2Scene produces photo-realistic street-view
videos with robust temporal consistency and outperforms
existing methods, there are still several major limitations.
Large-scale generation. Our model may not handle very
large-scale scenes, e.g., a city-scale scene due to potentially
limited computation resources. Generating blocks sepa-

rately can be an alternative to solve the scale problem, but
it also introduces the potential problem of texture disconti-
nuity between neighboring blocks.

Computation only on surfaces. Our model only performs
on the potentially visible surfaces rather than all the surfaces
of the scene to reduce computational efforts. The invisible
grounds at the base of the buildings were also removed.

Style diversity. The generated building textures do not
hold very well diversity, which can be attributed to sev-
eral factors: (1) The GT geometry in HoliCity [45] dataset
is not sufficiently detailed, lacking representations of sub-
tle features such as slightly elevated sidewalks or recessed
windows on building facades. Such a limitation can hin-
der the learning process for mapping geometry to appear-
ance. (2) Our approach generates entire scenes simultane-
ously, necessitating the learning of appearance correlations
among different building instances, in addition to individ-
ual building’s appearance. This may lead the network to
pay less attention to diversity. (3) 3D networks typically
have a smaller network scale (number of layers, channels,
etc.) than 2D ones due to 3D convolution, which limits their
capacity to generate diverse appearances. As potential solu-







tions, one can consider introducing latent diffusion models
in 3D sparse space or adopting generation based on indi-
vidual building instances. Also, incorporating semantics as
input conditions may contribute to enhancing diversity.
Road surface. The road surface is not very well gener-
ated and there are three potential reasons stemming from
the dataset: (1) The presence of cars, passengers, and shad-
ows on roads in GT images poses a challenge to the seg-
mentation model in filtering them out, potentially resulting
in black spots on the road surface during inference. (2) Due
to the GT poses often looking a bit up to the sky, a small
area around the camera origin tends to lack sufficient su-
pervision signals during training. (3) The pixel ratio for
buildings (∼43.2%) surpasses that of roads (∼15.8%) in GT
images, leading the network to prioritize learning building
facades in this unbalanced scenario. A potential solution
for addressing (3) is to introduce a balance factor in the loss
functions or employ distinct networks dedicated to handling
buildings and roads, respectively.
Future direction. Below we discuss potential future devel-
opment directions. Instead of the current setting which is
generating the whole scene, we can further divide the whole
geometry into small elements, e.g., building instances, and
generate textures individually, which could lead to better
diversity. In terms of network architecture, we may also
follow LDMs [32] to perform the diffusion models in a la-
tent space, given that there is enough 3D urban scene data
to train a good auto-encoder with a sparse setting. Fur-
thermore, we can incorporate satellite image information
mainly for road surface generation. Also, our model can be
combined with a natural language setting, or can even build
a side branch similar to ControlNet [43] on top of the trained
one, to further extend the model to a conditional generation,
e.g., having semantic information as input.
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Figure 9. Additional qualitative ablation study. We present fur-
ther qualitative results for various ablations of our method. The
rendered images visibly contain more details and the depths are
recovered better with our full method. The second line of each
example shows the depth in pseudo colors, except the bottom
left ones which are GT images.
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