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1. Evaluation metrics001

Following common practices, we mainly use the top-1 ac-002
curacy to evaluate the semantic capacity of the pre-trained003
model for linear probing and fine-tuning classification task.004
Meanwhile, we adopt the box and mask mean average pre-005
cision to validate the performance of transfer learning in ob-006
ject detection and instance segmentation tasks. Finally, we007
adopt the mean intersection of union to verify the transfer008
ability of the semantic segmentation task.009

2. Pre-training settings010

2.1. Large-scale settings011

In experiments of COCO, both ImageNet-100 and COCO,012
and ImageNet-1K, for a fair comparison, we follow the set-013
tings of MAE [6]. We partition the image of 224 × 224014
into 14 × 14 patches with the patch size being 16 × 16,015
and each patch as an image token. For ViT-Base model, it016
has 12 blocks, and each block has 768 feature dimensions017
and 12 self-attention heads. The batch size is set as 4096.018
Meanwhile, the weight decay, β1 and β2 for AdamW op-019
timizer is set to be 0.05, 0.9 and 0.95, respectively. The020
warmup epochs is set as 40 epochs and the base learning021
rate base lr = 1.5e−4. In the experiment of ASL, the022
Transformer layer at the end of the encoder has 768 fea-023
ture dimensions and 4 self-attention heads with 0.5 dropout024
ratio. For the ablation study and COCO pre-training exper-025
iments, we pre-train ASL with 800 epochs on COCO, then026
report these results of ImageNet linear probing and COCO027
detection. In pre-training experiments on both ImageNet-028
100 and COCO, we pre-train ASL with 800 epochs and029
4000 epochs. In ImageNet-1K pre-training experiments, we030
pre-train the ASL with the same epochs of MAE.031

2.2. Small-scale settings032

In experiments of CIFAR-10 and CIFAR-100, we adopt033
the ViT-Small as the base architecture to verify the effec-034
tiveness of ASL in small-scale datasets. ViT-Small is pre-035
trained on CIFAR-10 and CIFAR-100 [10]. According to036
the prior work [3, 7], ViT-Small has 12 layers. For each037
layer, it has 384 feature dimensions and 6 self-attention038

heads. In our experiments, we adopt patch size 4 × 4 of 039
image region as an image token and split the 32 × 32 im- 040
ages into 8 × 8 tokens. For the design of the decoder, its 041
attention head and feature dimension are the same as the 042
encoder. Besides, we set the decoder for MAE [6] to have 043
the same depth, attention head, and dimension as ours. In 044
the pre-training process, the batch size is set as 512, and 045
weight decay is set as 0.05. The standard random cropping 046
and horizontal flipping are used for data augmentation. Fur- 047
thermore, we adopt AdamW optimizer [14], β1 = 0.9 and 048
β2 = 0.999. base lr = 1e−3 to train the basic backbone, 049
and the warmup epochs are set as 10 epochs. These ViT- 050
Small models are pre-trained for 1600 epochs. In the exper- 051
iment of ASL, the Transformer layer at the end of the en- 052
coder has 384 feature dimensions and 4 self-attention heads 053
with 0.5 dropout ratio. 054

3. The downstream tasks settings of COCO, 055

pre-training on both ImageNet-100 and 056

COCO, and ImageNet-1K 057

3.1. The details of linear probing 058

For linear probing, we follow MAE [6] to evaluate the 059
ImageNet pre-trained models, using the LARS [19] opti- 060
mizer with momentum 0.9. The model is trained for 90 061
epochs. The batch size is 16384, the warmup epoch is 10 062
and the learning rate is 6.4. We adopt an extra BatchNorm 063
layer [9] without affine transformation (affine=False) 064
before the linear classifier. We set weight decay as zero. For 065
ablation studies, we train 200 epochs and report the results 066
of linear probing. The details are described in Table 1. 067

3.2. The details of end-to-end finetuning 068

Similarly, we adhere the hyper-parameters of MAE to end- 069
to-end finetuning. The details are shown as Table 2. 070

3.3. The details of object detection and instance seg- 071
mentation 072

By strictly following the training setting of MAE [6, 12], 073
we train all models with the same simple formula: large- 074
scale jitter [4], scale range ([0.1, 2.0]), AdamW (β1, β2 = 075
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0.9, 0.999) with half-period cosine learning rate decay, lin-076
ear warmup 0.25 epochs, and 0.1 drop path regularization.077
Moreover, the model is trained with 100 epochs and the078
batch size is set to be 64. Also, the learning rate is 8e − 5,079
and the weight decay is 0.1.080

3.4. The details of semantic segmentation081

Similarly, we fully follow the training setting of MAE.082
UperNet framework [18] is adopted as our segmentation083
method in our experiments. In particular, we use AdamW084
as the optimizer. The input resolution is set to be 512×512.085
The batch size is 16 and the layer-wise decay rate is 0.65.086
The model is end-to-end finetuned for 100 epochs.087

4. The downstream tasks settings of CIFAR088

In experiments of CIFAR-10 and CIFAR-100, the settings089
of downstream tasks are following as [7].090

config value
optimizer LARS [19]
base lr 0.1
weight decay 0
momentum 0.9
batch size 16384
learning rate schedule cosine decay [13]
warmup epochs [5] 10
training epochs 90
augmentation RandomResizedCrop

Table 1. Linear probing setting.

config value
optimizer AdamW [14]
base lr 1e-3
weight decay 0.05
β1,β2 [1] 0.9, 0.999
layer-wise lr decay 0.75
batch size 1024
learning rate schedule cosine decay
warmup epochs 5
training epochs 100
augmentation RandAug (9, 0.5) [2]
label smoothing [16] 0.1
mixup [21] 0.8
cutmix [20] 1.0
drop path [8] 0.1

Table 2. End-to-end finetuning setting.

5. Compared with MAE pre-trained on 091

ImageNet-1K 092

In order to assess the generalization capability of the ASL 093
in arbitrary scenarios fairly and reasonably, we compared 094
MAE pre-trained on the ImageNet-1K dataset with the 095
ASL model pre-trained on a combination of ImageNet- 096
100 and COCO, specifically examining its performance 097
on the ImageNet-100 dataset. It is noteworthy that both 098
the ImageNet-1K dataset and the mixed ImageNet-100 and 099
COCO dataset share ImageNet-100 as a subset. There- 100
fore, a more equitable and justifiable evaluation method 101
for pre-trained models is to assess their performance on 102
the ImageNet-100 and other datasets, in contrast to directly 103
evaluating them on ImageNet-1K. As depicted in the Table 104
3, the performance of ASL, pre-trained for approximately 105
236k iterations, surpasses that of MAE trained for about 106
499k iterations, all the while utilizing only 70% of the com- 107
putational load required by MAE. Moreover, the main text 108
shows the performance of ASL outperforms that of MAE 109
on COCO detection, instance segmentation, and ADE20k 110
semantic segmentation. These results not only highlight the 111
adaptability of ASL on arbitrary scenarios but also under- 112
scores its efficiency as a more effective algorithm. 113

6. The results of ViT-L 114

In order to demonstrate the generalization capability of ASL 115
at a larger architecture, we conduct experiments using the 116
ViT-L architecture, and the results are presented in the Table 117
4. The findings reveal that our approach achieves higher 118
gains when employing a larger network structure. 119

7. The impact of global data augmentation in 120

contrastive learning on MAE 121

In order to assess the impact of data augmentation previ- 122
ously validated in contrastive learning on MAE, we con- 123
ducted some experiments in Table 5 using the ImageNet-1K 124
dataset. All experiments were pre-trained for 200 epochs. 125
The results indicate that the employed data augmentations 126
are not conducive to improving MAE. These augmenta- 127
tions, implemented at a global level, prove impractical for 128
MAE with patch-level learning. These experimental find- 129
ings inspire us to propose patch-level feature enhancement 130
as opposed to conventional global-level data augmentation 131
for self-supervised learning. 132

8. Pre-training on OpenImages dataset 133

Here we provide 800-epoch results on OpenImages[11]. Its 134
ImageNet-100 linear evaluation, object detection, and se- 135
mantic segmentation are 87.6%, 51.7%, and 49.7%, out- 136
performing the performance of MAE (83.5%, 49.9%, and 137
47.8%). 138
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Method Pre-train data Iterations Epochs FLOPs LP FT

MAE [6] ImageNet-1K ∼ 249k 800 1 × 80.5% 92.7%
MAE [6] ImageNet-1K ∼ 499k 1600 2 × 85.3% 93.1%
ASL ImageNet-100 + COCO ∼ 236k 4000 ∼ 1.4× 85.9% 94.2%

Table 3. ImageNet-100 Top-1 accuracy of different methods under linear probing (LP) and fine-tuning (FT) setting. We report top-1
accuracy on the ImageNet-100 val set. All of these methods adopt ViT-B.

Method Pre-train data Epochs Arch. LP FT

ASL ImageNet-100 + COCO 800 ViT-B 79.6% 92.4%
ASL ImageNet-100 + COCO 800 ViT-L 85.1% 93.7%

Table 4. ImageNet-100 Top-1 accuracy of different methods
under linear probing (LP) and fine-tuning (FT) setting. We
report top-1 accuracy on the ImageNet-100 val set.

augmentation Linear probing

baseline 58.8%
+ colorjitter 57.6%
+ grayscale 57.4%
+ gaussianblur 58.2%
+ solarize 55.8%

Table 5. The impact of global data augmentation in contrastive
learning on MAE. We report top-1 accuracy on ImageNet-1K
based on linear probing. All of these methods adopt ViT-B ar-
chitecture.

9. Loss coefficient139

The loss coefficient for LSEM under AEE setting is set to140
0.1, 0.5, 1, and 2, and the corresponding linear evaluation141
results of 47.0%, 48.0%, 48.6%, and 47.3%.142

10. Runtime comparison between iBOT and143

ASL144

Based on a batchsize of 32 for ViT-B, ASL achieves an145
iteration time of 0.2 s on V100 while iBoT is 1.6 s, de-146
spite iBoT having only 4 times FLOPs of ASL. According147
to our design, ASL’s dual-branch features share the same148
model, enabling parallel computation for accelerated pro-149
cessing and allowing all features to be forwarded in a single150
pass. In contrast, hybrid methods like iBoT typically in-151
volve two models (student model and teacher model), lead-152
ing to sequential computation. Specifically, after the for-153
ward computation of the student model is completed, the154
teacher model is then invoked, resulting not only in in-155
creased FLOPs but also longer processing times. We will156
add the time comparison.157

11. Explanation of Tables in main text 158

Tables 1-4 constitute a comprehensive comparison which 159
is divided into two parts. The first part (Tables 1 and 2) 160
involves the comparison on the same dataset. The second 161
part (Tables 3 and 4) comprises the comparison on the best 162
performance, where we compare our ASL with other meth- 163
ods pre-trained on their favorite datasets according to their 164
respective papers. The results show that ASL consistently 165
achieves the SOTA in both cases. More discussions are also 166
described in lines 417-445 (part 1) and 485-495 (part 2). 167

12. The detailed derivation 168

The MSE is equivalent to Eq(1), where C is a constant and 169
equal to p(xmi). 170

Lsingle(i) = − log p(xmi
|xinputs, θ, ξ)

∼= − log p(xmi
|xinputs, θ, ξ) + logC

= − log p(xmi
|xinputs, θ, ξ) + log1 + logC

= − logN (xmi ;xpi , σ
2
noiseI) + log1 + logC

= − logN (xmi
;xpi

, σ2
noiseI)

+ log

∫
N (xmi

;xpi
, σ2

noiseI)dxmi
+ logC

= − logN (xmi
;xpi

, σ2
noiseI)

+ log

∫
N (xmi

;xpi
, σ2

noiseI) · Cdxmi

= − logN (xmi
;xpi

, σ2
noiseI)

+ log

∫
N (xmi

;xpi
, σ2

noiseI) · p(xmi
)dxmi

(1)

171

For the second part of Eq(1), we utilize monte carlo 172
method to solve p(xmi) and can obtain the Eq(2). 173∫

N (xmi
;xpi

, σ2
noiseI) · p(xmi

)dxmi

=
xmi

∼p(mi)
[N (xmi

;xpi
, σ2

noiseI)]

≈ 1

N

N∑
b=1

N (xmi(b)
;xpi

, σ2
noiseI)),

(2) 174
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The monte carlo method treats all pseudo labels175
in a training batch as random samples from p(xmi).176
Hence, for pseudo labels in a training batch B =177
{xmi(1)

, xmi(2)
, ...xmi(N)

}, the loss is defined as Eq(3),178

where λ = 2σ2
noise is a temperature coefficient.179

Lsingle(i) = − logN (xmi
;xpi

, σ2
noiseI)

+ log

∫
N (xmi

;xpi
, σ2

noiseI) · p(xmi
)dxmi

∼= − logN (xmi
;xpi

, σ2
noiseI)

+ log

∫ N∑
b=1

N (xmi(b)
;xpi

, σ2
noiseI))

= − log
exp(−||xpi

− xmi
||2/λ)∑

x′
mi

∈B exp(−||xpi − x′
mi

||2/λ)
,

(3)

180

13. The proof of maximizing likelihood estima-181

tion is equivalent to minimize MSE182

For the likelihood estimation, it can be expressed as below183
with the function L where θ is the model, i is the index for184
the sample, and f is the probability density function:185

L(θ) =
∏
i

f(xi|µ, σ2) (4)186

The probability density function f for a Gaussian:187

f(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 (5)188

For maximum likelihood estimation, the y is the label,189
and yp is the prediction by the model, the training stage190
of the model is modeled as the Gaussian distribution y ∼191
N (yp, σ

2I), that is, the prediction is considered as the mean192
of a noisy prediction distribution:193

argmax
∏
i

f(yi|yip, σ2) = argmax
∏
i

f(yi|yip, σ2)

= argmax
∏
i

f(yi|yip, σ2)

= argmax
∏
i

1

σ
√
2π

e−
(yi−yi

p)2

2σ2

∼= log(argmax
∏
i

1

σ
√
2π

e−
(yi−yi

p)2

2σ2

(6)194
The log maximum likelihood estimation:195

log(argmax
∏
i

1

σ
√
2π

e−
(yi−yi

p)

2σ2 ∝ argmax
∑
i

−
(yi − yip)

2σ2

∝ argmin
∑
i

(yi − yip)
2

(7)196

From the above, it can be observed that maximizing like- 197
lihood estimation is equivalent to minimize MSE. 198

14. Limitations 199

We have not extended ASL to larger datasets [15, 17, 22] 200
and larger architectures (e.g., ViT-H) due to the resource 201
and time consumption. 202

References 203

[1] Mark Chen, Alec Radford, Rewon Child, Jeffrey K Wu, Hee- 204
woo Jun, David Luan, and Ilya Sutskever. Generative pre- 205
training from pixels. In International Conference on Ma- 206
chine Learning, pages 1691–1703, 2020. 2 207

[2] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V 208
Le. Randaugment: Practical data augmentation with no sep- 209
arate search. arXiv preprint arXiv:1909.13719, 2019. 2 210

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, 211
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, 212
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl- 213
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is 214
worth 16x16 words: Transformers for image recognition at 215
scale. In International Conference on Learning Representa- 216
tions, 2021. 1 217

[4] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung- 218
Yi Lin, Ekin D Cubuk, Quoc V Le, and Barret Zoph. Simple 219
copy-paste is a strong data augmentation method for instance 220
segmentation. In Proceedings of the IEEE conference on 221
computer vision and pattern recognition, pages 2918–2928, 222
2021. 1 223

[5] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord- 224
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, 225
Yangqing Jia, and Kaiming He. Accurate, large mini- 226
batch sgd: Training imagenet in 1 hour. arXiv preprint 227
arXiv:1706.02677, 2017. 2 228

[6] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr 229
Dollár, and Ross Girshick. Masked autoencoders are scalable 230
vision learners. arXiv preprint arXiv:2111.06377, 2021. 1, 3 231

[7] Tianyu Hua, Yonglong Tian, Sucheng Ren, Hang Zhao, 232
and Leonid Sigal. Self-supervision through random seg- 233
ments with autoregressive coding (randsac). arXiv preprint 234
arXiv:2203.12054, 2022. 1, 2 235

[8] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil- 236
ian Q Weinberger. Deep networks with stochastic depth. In 237
European conference on computer vision, pages 646–661. 238
Springer, 2016. 2 239

[9] Sergey Ioffe and Christian Szegedy. Batch normalization: 240
Accelerating deep network training by reducing internal co- 241
variate shift. In International Conference on Machine Learn- 242
ing, 2015. 1 243

[10] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple 244
layers of features from tiny images. 2009. 1 245

[11] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui- 246
jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan 247
Popov, Matteo Malloci, Alexander Kolesnikov, et al. The 248
open images dataset v4: Unified image classification, object 249

4



CVPR
#8033

CVPR
#8033

CVPR 2024 Submission #8033. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

detection, and visual relationship detection at scale. Interna-250
tional Journal of Computer Vision, 128(7):1956–1981, 2020.251
2252

[12] Yanghao Li, Saining Xie, Xinlei Chen, Piotr Dollar, Kaim-253
ing He, and Ross Girshick. Benchmarking detection254
transfer learning with vision transformers. arXiv preprint255
arXiv:2111.11429, 2021. 1256

[13] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-257
tic gradient descent with warm restarts. arXiv preprint258
arXiv:1608.03983, 2016. 2259

[14] Ilya Loshchilov and Frank Hutter. Decoupled weight decay260
regularization. arXiv preprint arXiv:1711.05101, 2017. 1, 2261

[15] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhi-262
nav Gupta. Revisiting unreasonable effectiveness of data in263
deep learning era. In Proceedings of the IEEE international264
conference on computer vision, pages 843–852, 2017. 4265

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon266
Shlens, and Zbigniew Wojna. Rethinking the inception archi-267
tecture for computer vision. In Proceedings of the IEEE con-268
ference on computer vision and pattern recognition, pages269
2818–2826, 2016. 2270

[17] Bart Thomee, David A Shamma, Gerald Friedland, Ben-271
jamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and272
Li-Jia Li. Yfcc100m: The new data in multimedia research.273
Communications of the ACM, 59(2):64–73, 2016. 4274

[18] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and275
Jian Sun. Unified perceptual parsing for scene understand-276
ing. In Proceedings of the European Conference on Com-277
puter Vision, pages 418–434, 2018. 2278

[19] Yang You, Igor Gitman, and Boris Ginsburg. Large279
batch training of convolutional networks. arXiv preprint280
arXiv:1708.03888, 2017. 1, 2281

[20] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk282
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-283
larization strategy to train strong classifiers with localizable284
features. In Proceedings of the IEEE/CVF international con-285
ference on computer vision, pages 6023–6032, 2019. 2286

[21] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and287
David Lopez-Paz. mixup: Beyond empirical risk minimiza-288
tion. arXiv preprint arXiv:1710.09412, 2017. 2289

[22] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,290
and Antonio Torralba. Places: A 10 million image database291
for scene recognition. IEEE transactions on pattern analysis292
and machine intelligence, 40(6):1452–1464, 2017. 4293

5


	. Evaluation metrics
	. Pre-training settings
	. Large-scale settings
	. Small-scale settings

	. The downstream tasks settings of COCO, pre-training on both ImageNet-100 and COCO, and ImageNet-1K
	. The details of linear probing
	. The details of end-to-end finetuning
	. The details of object detection and instance segmentation
	. The details of semantic segmentation

	. The downstream tasks settings of CIFAR
	. Compared with MAE pre-trained on ImageNet-1K
	. The results of ViT-L
	. The impact of global data augmentation in contrastive learning on MAE
	. Pre-training on OpenImages dataset
	. Loss coefficient
	. Runtime comparison between iBOT and ASL
	. Explanation of Tables in main text
	. The detailed derivation
	. The proof of maximizing likelihood estimation is equivalent to minimize MSE
	. Limitations

