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Supplementary Material

A. Proofs
A.1. Proof of Theorem 1

Theorem 1 (Soft label could reduce the IIW) Let u be
the uniform random variable with p.d.f p(u). By using the
composition in Eq. (2), there exists an interpolation ration λ
between the clean label distribution and uniform distribution,
such that

I(y∗;w|x′) ≲ I(y;w|x′) (A.1)

where p(y∗|x′, w) = λ · p(y|x′, w) + (1− λ) · p(u) and the
symbol ≲ means that the corresponding inequality up to an
c-independent constant.

Proof. For this proof, we will use an inequality called the
log-sum inequality.

Lemma. 1 (Log-sum inequality) Let a1, · · · , an and
b1, · · · , bn be nonnegative numbers. Denote the sum of all
ais by a and the sum of all bis by b. The log sum inequality
states that

n∑
i=1

ai log
ai
bi
≥ a log

a

b
.

with equality if and only if
ai
bi

are equal for all i.

We rewrite the interpolation for simplicity

p(y∗|x′, w) = λ · p(y|x′, w) + (1− λ) · p(u)
p∗ = λ · p1 + (1− λ) · p2
p = λ · p1 + (1− λ) · p1

(A.2)

Then we could derive the decomposition of cross entropy on
different label distribution, i.e., p∗ and p.

H(p∗, f) = H(p∗)− I(w; p∗) + Ew∼Q(w|S)KL[p∗∥f ]
= λ · H(p1) + (1− λ) · H(p2)− I(w; p∗) + E∗

= λ · H(p) + (1− λ) · H(p2)− I(w; p∗) + E∗

(A.3)

H(p, f) = H(p)− I(w; p) + Ew∼Q(w|S)KL[p∥f ]
= λ · H(p) + (1− λ) · H(p)− I(w; p) + E

(A.4)

We would like to simplify the term E∗ − E. Note that we
utilize the important property of KL divergence via log-sum

inequality.

KL(p∗∥f) =
∑

(λp1 + (1− λ)p2) log
λp1 + (1− λ)p2
λf + (1− λ)f

≤ λ · KL(p∥f) + (1− λ) · KL(u∥f)
Use the same trick on KL(p∥f), and we could get

E∗ − E ≤ (1− λ) · [KL(u∥f)− KL(p∥f)]
Therefore

H(p∗, f)−H(p, f) = (1− λ)
(
H(p2)−H(p)

)
+Q+ E∗ − E

≤ (1− λ) · [H∗ +R] +Q
Here,H∗ = H(u)−H(p) is always semi-positive andR =
KL(u∥f) − KL(p∥f). The difference of the two entropy
could also be (1−λ) ·H(u, f)−H(p, f) and then we could
complete the proof, i.e., Q ≥ 0.

■

A.2. Proof of Proposition 1

Proposition. 1 Let ℓsce, ℓrce be the symmetric and reverse
cross entropy loss function respectively and γ represents
their summation, i.e., ℓsce + ℓrce = γ. When γ → 1, then
our methods can also be written as:

ℓsglr = ℓsce − α · ℓrkl
where ℓrkl denotes the reverse KL divergence between labels
and model predictions, i.e., DKL(p || q).
Proof. Formally, the conventional SCE loss can be written
as:

ℓsce = α · ℓce + β · ℓrce
Note that α, β = 1 is a special case of this form. We can
still let γ → 1, then

ℓsce = α · ℓce + (1− α) · ℓrce (A.5)

We take a closer look at the self-guided soft label and write
p(k;x) as p(k) for simplicity 1.

q′(k) = (1− α) · q(k) + α · p(k)

H(q′(k), p(k)) =−
K∑

k=1

(1− α) · q(k) · log p(k)

+ α · p(k) · log p(k)
=(1− α) · H(q, p) + α · H(p)

(A.6)
1We omit the adversarial knowledge and historical average prediction

temporarily without loss of generality.



where q(·) is the ground truth distribution over the labels and
H(·) denotes the cross entropy loss. Recall that the Kullback-
Leibler Divergence could be dubbed as information gain, i.e.,
DKL(p || q) = H(p, q) −H(p). As γ → 1, then the cross
entropy loss of our method can also be written as:

H(q′(k), p(k)) =(1− α) · H(q, p) + α · H(p, q)
− α ·DKL(p || q)

=ℓsce + α · ℓrkl
(A.7)

■

A.3. Proof of Proposition 2

Proposition. 2 Some KD methods, which minimize the dis-
tance of the feature map between the teacher and student
model, belong to the family of our method. Let pt be the
prediction of the teacher model and then the KD could
also be written as ℓKD = Eq̃ [− log p] = H(q̃, p), where
q̃ = (1− α) · q + α · pt.
Proof. Firstly, for the self-guided soft label q′ = (1−α) ·q+
α · p, if we replace the self-prediction p with the knowldege
of teacher model pt, we have

q̃ = (1− α) · q + α · pt (A.8)

We utilize the special form q̃ and have

H(q̃, p) = −
∑

q̃ · log p

= −(1− α)
∑

q · log p− α
∑

pt · log p
= (1− α) · H(q, p) + α · H(pt, p)

(A.9)

We here apply KL equality again

DKL(pt || p) = H(pt, p)−H(pt) (A.10)

Note thatH(pt) represents the entropy of teacher prediction.
When teacher is fixed, H(pt) is a constant so that we can
miss it during loss minimization. Then the loss of special
soft label can be written as:

H(q̃, p) = (1− α) · H(q, p) + α ·DKL(pt || p) (A.11)

Some KD methods minimize this loss function (1 − α) ·
H(q, p) + α ·DKL(pt || p) and belong to the family of our
method.

■

A.4. Proof of Theorem 2

Theorem 2 In a K-class classification problem, ℓ̃ is noise-
tolerant under symmetric or uniform label noise if noise rate
η < 1− 1

K . And if R(f∗) = 0, l̃ is also noise-tolerant under
asymmetric or class-dependent label noise when noise rate
ηy,k < 1− ηy with

∑
i ̸=y ηy,i = ηy , then

Rη
S(f

∗)−Rη
S(f) ≃ (1− ηK

K − 1
)(RS(f

∗)−RS(f)) ≤ 0

Proof. For symmetric noise:

Rη
S(f) =Ex,y ℓ̃(x, y) = ExEy|xEη|x,y ℓ̃(x, y)

=ExEy|x

(1− η)ℓ̃(x, y) +
η

K − 1

K∑
k ̸=y

ℓ̃(x, k)


=(1− η)RS(f)

+
η

K − 1

(
1

N

N∑
i=1

K∑
k=1

ℓ̃(xi, k)−RS(f)

)

=RS(f)

(
1− ηK

K − 1

)
− η ·G(f)

where G(f) = − 1
N(K−1)

∑N
i=1 f(xi) · log f(xi) depends

on the performance of classifiers. Then we are more preoc-
cupied with the magitude of the difference between G(f∗)
and G(f). Considering that the global minimum is adept
at fitting the training data with nearly zero loss and we can
make an appropriate assumption that G(f∗) tends to be zero.
Besides, we calculate the worst-case of the classifier, which
randomly guesses the given data, and the entropy achieve
maximum value. The difference could be approximated to
C = η · (1− 1

K ) · 0.1 and thus,

Rη
S(f

∗)−Rη
S(f) = (1− ηK

K − 1
)(RS(f

∗)−RS(f)) + C

since f∗ is the global minimum of RS(f) undert noise free
data and the constant C could be approximately igore as the
small magnitude. This proves that f∗ is also the the global
minimizer of Rη

S(f) and our method is nearly noise-tolerant.
For asymmetric or class-dependent noise, 1− ηy is the

probability of a label being correct (i.e., k = y), and the
noise condition ηy,k < 1− ηy generally states that a sample
x still has the highest probability of being in the correct
class y, though it has probability of ηy,k being in an arbitrary
noisy (incorrect) class k ̸= y. Following the symmetric case,
here we set C = max

∑N
i=1

∑K
k=1 ℓ̃(xi, k) and thus,

Rη(f) =Ex,y ℓ̃(x, y) = ExEy|xEy|x,y ℓ̃(x, y) (A.12)

=ExEy|x

(1− ηy) ℓ̃(x, y) +
∑
k ̸=y

ηyk ℓ̃(x, k)


(A.13)

=Ex,y

(1− ηy)

 K∑
k=1

ℓ̃(x, k)−
∑
k ̸=y

ℓ̃(x, k)


+ Ex,y

∑
k ̸=y

ηyk ℓ̃(x, k)

 (A.14)

=Ex,y

(1− ηy)

C −
∑
k ̸=y

ℓ̃(x, k)





+ Ex,y

∑
k ̸=y

ηyk ℓ̃(x, k)

 (A.15)

=C · Ex,y (1− ηy)

− Ex,y

∑
k ̸=y

(1− ηy − ηyk) ℓ̃(x, k)

 . (A.16)

Since ηy,k < 1 − ηy and f∗
η is the minimizer of Rη(f),

Rη(f∗
η )−Rη(f∗) ≤ 0. So, from Eq. (A.16),

Ex,y

∑
k ̸=y

(1− ηy − ηyk) (ℓ̃ (f
∗(x), k)− ℓ̃

(
f∗
η (x), k

)
)

 ≤ 0.

(A.17)

This proves that under asymmetric noise setting f∗ is also
the the global minimizer of Rη

S(f) and our method is noise-
tolerant.

■

B. More results

Figure B.1. Label noise in CIFAR-10 training dataset.

B.1. Label noise in common datasets

As reported in the study in [23], label noise is surprisingly
common in benchmark datasets such as CIFAR-10, which
is presented in Fig. B.1. We note that some examples are
mislabelling (e.g., dog labeled with cat in Fig. B.1). Such
erroneously annotated samples make it hard for models to
learn a good decision boundary. Unsurprising, feeding the
model with such noisy labels would inevitably exacerbate the
problem of robust overfitting and leads to over confidence.

B.2. More results about calibration

A ideally trustworthy and reliable model ought to provide
high confidence prediction on correct category and contrari-
wise. So, we adopt expected calibration error (ECE) for a
model f with 0 < m <∞, as suggested in [19].

ECEp = E [| ẑ − E[δy,ŷ ẑ] |m]
1
m
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Figure B.2. Expected calibration error for adversarial training on
clean and adversarial samples. The learning rate is decayed by a
factor of 0.1 at 100-th and 150-th.
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Figure B.3. Samples density w.r.t. the prediction probabilities (the
softmax outputs on the labeled class).

where δi,j is the Kronecker delta, which appears true if the
variables are equal. We visualize the ECE during whole
adversarial training procedure in Fig. B.2.

From Fig. B.2, we can observe that vanilla adversarial
training weakens the over-confident prediction on clean sam-
ples, thus achieving a good calibration than standard training.
However, as the training progresses, the expected calibra-
tion error on adversarial samples shows a rapid ramp-up. It
also indicates that the latter predition of the adversarially
trained model is not well-calibrated and thus being not able
to provide trustworthy knowledge.

Table B.1. Expected calibration error for PGD-AT and our proposed
method on white-box (PGD-10) attack and black-box (square)
attack.

White-box (PGD attack) Black-box (Square attack)
Best ↓ Final ↓ Diff ↓ Best ↓ Final ↓ Diff ↓

AT 0.18 0.43 -0.25 0.07 0.39 -0.32
+SGLR 0.11 0.10 0.01 0.20 0.22 -0.02

Further, we also report the expected calibration error for
PGD-AT and our method on both best and final checkpoint
under different attacks. From Tab. B.1, we can observe that
our method effectively decrease the calibration error and
thus alliviate the over confident prediction. Additionally, we
plot the sample density w.r.t. predictions on the labeled class
in Fig. B.3. We reach the same conclusion that our proposed
method reduce the overconfidence mostly and thus achieve
good generalization.
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Figure B.4. Test accuracy (%) on clean and different noisy CIFAR-10 testset. The horizontal gray dashed line denotes the portion of correct
labels.
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Figure B.5. Training and test accuracy (%) under different noise
type in CIFAR-10 training dataset.

B.3. More experiments under different noise set-
tings

As reported in [22], robust overfitting has been prevalent
across various datasets and models. However, it may not
occur while the strength of attack is relatively weak. We
observe that smaller perturbation does not lead to a double-
descent test accuracy and even obtains an overall increase,
while large perturbation induces robust overfitting.

As discussed in Sec. 2, robust overfitting is similar to
label noise in standard training to some extend. Namely,
when the noise rete ramps up, it is on the verge of occuring
with double descent curves.

From Fig. B.5, we can obverve that other noise types (like
Gaussian and random pixels), even with extremely large per-

turbation, do not incur overfitting. The training accuracy and
test accuracy consistently increase as the learning rate de-
cayed though the clean test accuracy oscillates in its infancy.

Besides, we provide the training procedure of hard label
and self-guided soft label over different noise rate on CIFAR-
10 dataset in Fig. B.4 and Tab. B.2 . It is worth noting that
self-guided soft label constantly narrow the training and
testing gap as the noise rate ramps up, while the hard label
still memorizes the training data and eventually leads to bad
testing accuracy.

Table B.2. Evaluating different label strategies at various noise
rates.

Rate 0% 20% 60% 80%

Hard Label 26.8 37.8 62.1 81.6
Soft Label 26.4 35.5 59.5 80.4

Self-Guided Soft Label 25.5 33.8 51.3 78.9

B.4. More experiments about black-box attacks and
large model architecture

Additionally, we present evaluations on black-box attacks,
i.e., adversarial examples generated from a different model
(typiclally from a larger model), in Tab. B.3. Here, we



Table B.3. Performance (%) of PGD-AT and our proposed method against different black-box attacks.

ResNet-34 → ResNet-18
PGD-10 CW∞

Best Final Diff Best Final Diff

AT 63.9 64.9 -1.0 72.5 70.1 2.4
AT+SGLR 64.0 64.1 -0.1 72.7 72.9 -0.2

ResNet-50 → ResNet-18
PGD-10 CW∞

Best Final Diff Best Final Diff

AT 81.3 82.7 -1.4 83.1 81.6 1.5
AT+SGLR 80.9 80.9 0.0 83.0 82.8 0.2

Table B.4. Clean accuracy and robust accuracy (%) against white-box attacks of networks. All threat models are under ℓ∞ norm with
ϵ = 8/255. The bold indicates the improved performance achieved by the proposed method.

Method
Natrural Accuracy PGD-20 AutoAttack

Best Final Diff ↓ Best Final Diff ↓ Best Final Diff ↓
ResNet-18

AT 80.7 82.4 -1.6 50.7 41.4 9.3 47.7 40.2 7.5
+SGLR 82.9 83.0 0.1 56.4 55.9 0.5 51.2 50.2 1.0

ResNet-34-10

AT 87.6 86.4 1.2 55.9 50.2 5.7 51.2 45.6 5.6
+SGLR 87.4 87.2 0.2 59.5 58.0 1.5 54.3 52.3 2.0

test ResNet-18 trained under PGD-AT and our proposed
method with crafted adversarial examples from ResNet-34
and ResNet-50 trained with vanilla AT. Results in Tab. B.3
demonstrate that our method indeed close the gap between
best and final checkpoint. These results not only show that
our method does not suffer from the gradient obfuscation but
also show that our method is effective in black-box attack
settings.
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Figure B.6. Result of training and testing accuracy over epochs for
ResNet-18 trained on CIFAR-10.

Furthermore, performance against various white-box at-
tacks for large model architecture are shown in Tab. B.4.
We similarly found that combing PGD-AT with our method
could achieve superior performance even under strong au-
toattack. Notably, our method can largely reduce the gap
between the best and final accuracies and thus effectively
prevent robust overfitting.

B.5. Different learning rate strategies

The staircase learning rate schedule (piece-wise) is typiclally
applied in adversarial training, which may have negative
influence in obtaining robust models. In Fig. B.7, we plot
the test robust accuracy, gradient norm and trace of hes-
sian, which is widely used to measure the sharpness. As
shown, training with cosine learning rate schedule yields
smoother curves compared to that of the piece-wise learning
rate schedule. Note that it does not prevent the widening
generalization gap and robust overfitting, only influencing
the duration of the Stationary Stage. The green in Fig. B.7
supplements this with the trace of hessian, to better illustrate
the characteristics between the two stages.

0 50 100 150 200
Epoch

20

30

40

50

60

70

80

R
ob

us
t

A
cc

ur
ac

y
(%

)

Phase I Phase II

(a) The onset of overfitting is emerging in Phase II

Train accuacy

Test accuracy

0 50 100 150 200
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

G
ra

di
en

t
N

or
m

(b) Oscillatory growth in Phase II

Phase I Phase II

0

1

2

3

4

5

T
ra

ce
of

H
es

si
an

×103

Gradient norm

Trace of Hessian

Figure B.7. Different phases of training.

C. Algorithm



Algorithm 1 Self-Guided Label Smoothing

Require: Total Epoch N , Neural Network fθ with parame-
ters θ, Training Set D = {(xj , yj)}.
p̃t = 0
for all epoch = 1, · · · , N do

for all (xj , yj) ∈ D do
* Inner Maximization to update δ

δ ← arg max
∥δ∥p≤ϵ

ℓ(f(x), y)

* Outer Minimization to update θ

f̃(x, x′; θt) = λ · f(x; θ) + (1− λ) · f(x′; θ) {#
Self-Guided Label Refinement}

y = r · p̃t + (1− r) · yhard

p̃t = α · p̃t−1+(1−α) · f̃(x, x′; θt) {# Consensus
of the self-distilled models}

ℓsglr = ℓ(f(x), p̃t)

θ ← θ − η · (∇θL̃)
end for

end for


	. Introduction
	. A closer look at robust overfitting
	. Self-guided label refinement for adversarial training
	. Methodology
	. Connection to symmetric cross entropy
	. Comparison to knowledge distillation
	. Tolerant to noisy label

	. Experiments
	. Discussion and conclusion
	. Proofs
	. Proof of thm:iiw
	. Proof of pro:1
	. Proof of pro:2
	. Proof of thm:1

	. More results
	. Label noise in common datasets
	. More results about calibration
	. More experiments under different noise settings
	. More experiments about black-box attacks and large model architecture
	. Different learning rate strategies

	. Algorithm

