
Spacetime Gaussian Feature Splatting for Real-Time Dynamic View Synthesis
Supplementary Material

Zhan Li1,2∗ Zhang Chen1† Zhong Li1† Yi Xu1

1 OPPO US Research Center 2 Portland State University
lizhan@pdx.edu zhang.chen@oppo.com zhong.li@oppo.com yi.xu@oppo.com

https://oppo-us-research.github.io/SpacetimeGaussians-website/

A. Overview
Within the supplementary material, we provide:
• Quantitative and qualitative comparisons to concurrent

work in Appendix B.
• More ablation study in Appendix C.
• Additional discussions in Appendix D.
• Additional experiment details in Appendix E.
• Per-scene quantitative comparisons and more visual com-

parisons with other methods on the Neural 3D Video
Dataset [7], Google Immersive Dataset [3] and Techni-
color Dataset [12] in Appendix F.

• Real-time demos and dynamic comparisons in our video.
Please refer to our website.

B. Comparisons with Concurrent Work
We compare with concurrent work [10, 15–17] on the Neu-
ral 3D Video Dataset [7] in Tab. 1. We also include
Im4D [8] in this comparison since it is related to 4K4D [16].
Same with Table 1 in the main paper, we group DSSIM re-
sults into two categories (DSSIM1: data range is set to
1.0; DSSIM2: data range is set to 2.0).

Compared to methods [10, 15, 17] that similarly build
upon Gaussian Splatting, our method achieves the best ren-
dering quality and is among the fastest and most compact
ones. Specifically, in terms of quality, our full model per-
forms the best on all of PSNR, DSSIM and LPIPS. Mean-
while, our lite model also outperforms Dynamic 3DGS [10]
and 4DGaussians [15] by a noticeable margin, and is only
inferior to 4DGS [17].

Both our lite model and Dynamic 3DGS [10] can run at
over 300 FPS on the Neural 3D Video Dataset. Although
our full model is slower than these two, it is still faster than
4DGS [17] and 4DGaussians [15]. Compared with Dy-
namic 3DGS, our lite model takes about only six percent

† Corresponding authors.
∗ Work done while Zhan was an intern at OPPO US Research Center.

of model size and is 0.6 dB higher in PSNR. Meanwhile,
the results of Dynamic 3DGS contain many time-varying
floaters, which harm temporal consistency and visual qual-
ity. To illustrate this, we show the slices of a column of
pixels across time in Fig. 1. In this visualization, tempo-
ral noises appear as sharp vertical lines or dots. It can be
seen that the results of Dynamic 3DGS contain many such
patterns. On the contrary, our results are free of these ar-
tifacts. One reason for this phenomenon is that Dynamic
3DGS requires per-frame training, while ours trains across
a sequence of frames. As a result, our method can better
preserve the temporal consistency across frames. Please re-
fer to our video for dynamic comparisons.

Compared to Im4D [8] and 4K4D [16], both our full
model and lite-version model achieve higher rendering
quality and speed.

C. More Ablation Study
C.1. Guided Sampling and Strategies of Adding

Gaussians

We visualize the effects of guided sampling in Fig. 2. It
can be seen that when without guided sampling, distant ar-
eas that are not well covered by SfM points will have very
blurry rendering in both training and novel views. It re-
veals that it is challenging to pull Gaussians to these areas
with gradient-based optimization and density control. On
the other hand, with guided sampling applied, the render-
ings at these areas become much sharper for both training
and novel views. Note that the color tone difference in the
bottom two rows is caused by inconsistent white balance in
the training views of the scene, which makes each model
have slightly different color tone in the novel view.

We also compare our guided sampling with two other
strategies. The first one randomly adds Gaussians in the
whole space and the second one adds a sphere of Gaus-
sians near the far points of our guided sampling. As shown
in Tab. 2 rows 2-5, our method has over 0.7dB PSNR im-
provement.

1

https://oppo-us-research.github.io/SpacetimeGaussians-website/


Table 1. Quantitative comparisons on the Neural 3D Video Dataset. “FPS” is measured at 1352 × 1014 resolution. “Size” is the total
model size for 300 frames. Some methods only report results on part of the scenes. For fair comparison, we additionally report our results
under their settings. 3 only includes the Cook Spinach, Cut Roasted Beef, and Sear Steak scenes. 4 only includes the Cut Roasted Beef
scene. For the LPIPS metric, no annotation means LPIPSAlex, V denotes LPIPSV GG. † denotes it is unclear which LPIPS or DSSIM is
used from the corresponding paper.

Method PSNR↑ DSSIM1↓ DSSIM2↓ LPIPS↓ FPS↑ Size↓
Dynamic 3DGS [10] 30.67 0.035 0.019 0.099 460 2772 MB
4DGaussians [15] 31.15 - 0.016 † 0.049 † 30 90MB
4DGS [17] 32.01 - 0.014 0.055 114 -
Ours 32.05 0.026 0.014 0.044 140 200 MB
Ours-Lite 31.59 0.027 0.015 0.047 310 103 MB

4DGaussians [15] 3 32.62 0.023 † - - - -
Ours 3 33.53 0.020 0.010 0.034, 0.131 V 154 148MB
Ours-Lite 3 33.36 0.020 0.011 0.036, 0.133 V 330 83MB

Im4D [8] 4 32.58 - 0.015 0.208 V - -
4K4D [16] 4 32.86 - 0.014 0.167 V 110 -
Ours 4 33.52 0.020 0.011 0.035, 0.133 V 151 154 MB
Ours-Lite 4 33.72 0.021 0.011 0.038, 0.136 V 338 80 MB

Ours-LiteDynamic 3DGSGT Ours

Time t

Figure 1. Comparisons of temporal consistency on the Neural 3D Video Dataset. From the test view video results of each method, we
take a vertical column of 150 pixels across 250 frames and concatenate these columns horizontally. The resulting image patch is equivalent
to a slice in the height-time space. Ours results are clearer than Dynamic 3DGS [10] and contain fewer temporal noises.

C.2. Analysis on More Scenes

Tab. 2 rows 4-9 extend the ablation study in Table 4 of the
main paper to additional scenes from the Neural 3D Video
Dataset and the Google Immersive Dataset. We can see
that our proposed components remain effective under var-
ious camera setup and scene content.

C.3. Polynomial Orders and Replacing Polynomials
with MLP

In this experiment, we alter the polynomial orders np, nq

and replace the polynomials with MLPs. Tab. 3 shows
the results. Our choice of np, nq and polynomials balances
quality and storage.

Table 2. Ablation of guided sampling and other components.
Conducted on the first 50 frames of Flame Salmon and 09 Exhibit
scenes.

PSNR↑ DSSIM1↓ LPIPS↓
Add random Gaussians during init 27.72 0.0455 0.0787
Add a sphere of Gaussians during init 29.13 0.0381 0.0690
w/o Guided Sampling 27.48 0.0453 0.0921
Ours-Full 29.88 0.0373 0.0665
w/o Temporal Opacity 28.82 0.0376 0.0673
w/o Polynomial Motion 28.35 0.0406 0.0688
w/o Polynomial Rotation 28.69 0.0455 0.0690
w/o Feature Splatting 28.05 0.0448 0.0754



w/ Guided Samplingw/o Guided SamplingGT w/o Guided Sampling w/ Guided Sampling

Novel ViewTraining View

Figure 2. Ablation on Guided Sampling. With guided sampling, the rendering results contain less blurriness in both training and novel
views.

Table 3. Ablation of temporal function, polynomial orders, and
features. Conducted on the first 50 frames of Theater and Sear
Steak scenes.

Size (MB)↓ PSNR↑ DSSIM1↓ LPIPS↓
Ours-Temporal-MLP 41.6 30.93 0.0428 0.0967
np = 1 33.4 32.24 0.0388 0.0823
np = 2 37.3 32.43 0.0379 0.0820
np = 4 44.3 32.61 0.0374 0.0809
nq = 2 45.0 32.60 0.0377 0.0813
Ours-Full (np = 3, nq = 1) 40.7 32.56 0.0376 0.0816

w/o f base 31.9 31.83 0.0408 0.0959
w/o fdir 38.5 32.03 0.0384 0.0849
w/o f time 39.1 32.03 0.0392 0.0818
Random init f base 36.3 32.14 0.0385 0.0841
Random init fdir 40.7 32.22 0.0379 0.0827
Random init f time 40.8 32.45 0.0378 0.0814

C.4. Feature Components

In this experiment, we ablate different features (f base, fdir

and f time) used in our full model. As shown in Tab. 3 rows
7-10 and Fig. 3, each component boosts rendering quality.

C.5. Initialization of Features

In our model, f base and fdir are initialized with the color of
SfM points. f time is initialized as zeros. The last three rows
of Tab. 3 show an ablation of feature initialization, where

Table 4. Comparison with per-frame 3DGS and replacing the
MLP in Ours-Full with SH. Conducted on the first 50 frames of
Flame Salmon and Flame Steak scenes. Ours-SH uses SH of order
0 to 3, as in 3DGS.

Size (MB)↓ FPS↑ Train Time (min.)↓ PSNR↑ DSSIM1↓ LPIPS↓
3DGS 5100 135 700 29.76 0.0311 0.0486

Ours-SH 118 132 37 31.37 0.0276 0.0470
Ours-Full 37 145 35 31.66 0.0274 0.0467

our choice (Ours-Full) works better than random initializa-
tion.

C.6. Feature Rendering vs. Spherical Harmonics

In this experiment, we replace our full model’s feature ren-
dering with spherical harmonics rendering, and refer to this
baseline as Ours-SH. Tab. 4 and Fig. 4 show that Ours-
Full has better quantitative and visual quality while having
smaller model size than Ours-SH. For fair comparisons of
FPS, all methods use PyTorch implementation for render-
ing.

C.7. Comparison with Per-Frame 3DGS

To validate the improvements of our method, we further
compare with per-frame trained 3DGS. As shown in Tab. 4,



w/o f timew/o f dirw/o f baseGround Truth Ours

Figure 3. Ablation on feature components. Using all features produces the best visual quality.

Ours-FullGround Truth Ours-SH3DGS

Figure 4. Qualitative comparison of 3DGS [6], Ours-SH and Ours-Full. Conducted on the Flame Steak scene from the Neural 3D
Video Dataset [7]. 3DGS is trained per-frame. Ours-SH denotes replacing our feature rendering with spherical harmonics rendering in
3DGS [6].

our method has much smaller size and better rendering qual-
ity. Fig. 4 shows visual comparison.

C.8. Longer Video Sequence

In our experiments, following prior arts [2, 13], we train
each model with 50-frame video sequence and arrange these
models in series to render full-length sequences (typically
300 frames). In practice, this scheme can work for long
videos at the cost of redundancy among models (e.g., static
parts of the scene are repeatedly modeled). Our method also
supports using a single model to represent more frames.
Here, we conduct an experiment that directly trains our
model with 300 frames on the Flame Salmon scene from
the Neural 3D Video Dataset [7]. As shown in Tab. 5, com-
pared to six 50-frame models in series, our single 300-frame
model can reduce the per-frame training time and model
size by around 80% and 30% respectively. At the same
time, the rendering quality is comparable. This is attributed
to our temporal opacity formulation so that complex long-

sequence motion can be represented by multiple simpler
motion segments.

D. Discussions

Our method is able to model shadows and ambient occlu-
sions, as demonstrated in Fig. 3 and Fig. 4. For complex
motion, our temporal opacity allows using multiple Gaus-
sians where each one only needs to fit a shorter and less
complex motion segment. Generally, the size of tempo-
ral RBF is small for fast-changing volumetric objects (e.g.,
flames) and large for static solid objects. Learned motion
tends to be small for static objects and large for moving ob-
jects. Fig. 5 visualizes the temporal RBF and motion for an
example scene. Note that our method does not apply addi-
tional regularization on motion.

For guided sampling, although it can alleviate the blur-
ring in areas that are insufficiently covered by sparse point
cloud, it cannot fully eliminate such artifacts. This is re-



Table 5. Performance of longer sequence per model on the Flame Salmon scene from the Neural 3D Video Dataset. We increase the
training frames per model from 50 to 300. Longer sequence per model has smaller model size and shorter per-frame training time.

Video Length per Model # of Models Iterations per Model PSNR↑ DSSIM1↓ DSSIM2↓ LPIPS↓ Per-Frame Training Time (sec.)↓ Per-Frame Size (MB)↓ Total Size (MB)↓
50 frames 6 12K 29.48 0.038 0.0224 0.063 20 1 300
300 frames 1 10K 29.17 0.037 0.0222 0.068 3.7 0.7 216

T=25T=13T=1

Figure 5. Visualization of trajectory across 25 frames. The
background image is the ground truth at time T = 25. The color
of a trajectory denotes timestamp, where dark blue corresponds to
T = 1 and dark red corresponds to T = 25. To visualize tempo-
ral opacity along a trajectory, we set the alpha channel value of a
segment based on temporal opacity (excluding the spatial opacity
term σs

i ). We only show moving objects in the scene.

flected in some challenging scenarios such as the far con-
tent outside windows in the Coffee Martini scene and the
flame in the 02 Flames scene. The reason is that we do not
have accurate depth of these areas, hence need to spawn new
Gaussians across a depth range. However, these Gaussians
may not cover the exact correct locations, and the ones near
the correct locations may also be pruned during subsequent
training. A possible solution would be to leverage the depth
priors from learning-based depth estimation methods.

E. Experiment Details
E.1. Baselines

Since the open source code of MixVoxels [14] does
not contain the training config for MixVoxels-X, we use
MixVoxels-L in our comparisons. We train HyperReel with
their official code to generate visual examples. Note that
the training time of HyperReel for each scene on the Tech-
nicolor Dataset is about 3.5 hours, while that of our full
model on the Technicolor Dataset is only about 1 hour. For
Dynamic 3DGS, its performance on the Neural 3D Video
Dataset is not reported in their original paper. When apply-
ing their open source code to Neural 3D Video Dataset with
default hyperparameters, the rendering quality is subpar. So
we tune its hyperparameters to improve the performance on

this dataset.

E.2. Camera Models

We use the original centered-undistorted camera model
from 3DGS [6] for the Neural 3D Video Dataset. We im-
plement the uncentered-undistorted camera model for the
Technicolor Dataset. For the Google Immersive Dataset [3],
to evaluate on the same distorted videos as [1, 13], we fur-
ther adapt our method to fit the uncentered-distorted cam-
era model with a differentiable image space warping, which
maps perspective view to fish-eye distorted view. For the
real-time demo, we retrain our models on the undistorted
videos for simplicity. As there are black pixels in the undis-
torted images, we opt to use a mask to mask out the black
pixels. Since image warping and masking are differentiable,
our models can still be trained end-to-end.

E.3. Initialization

Following 3DGS [6], we use the sparse point cloud
from COLMAP for initialization. Since the datasets pro-
vide camera intrinsics and extrinsics, we input them to
COLMAP and call point triangulator to generate sparse
points. The running time for point triangulator is much less
than that of dense reconstruction. For the Theater, Train and
Birthday scenes in Table 3 of the main paper and in Tab. 8,
we only use 25 percent of SfM points from each frame (ex-
cept the first frame whose SfM points are all used). The se-
lection of SfM points is based on the distance between each
point and its nearest neighbor. After sorting the distances,
we keep the points with the longest distance to reduce re-
dundancy. In the ablation study on the number of frames
whose SfM points are used (Table 5 in the main paper), we
use all the points in each sampled frames.

Features f base and fdir are initialized with the color of
SfM points. f time is initialized as zeros.

E.4. Density Control

During training, we conduct 12 times of cloning/splitting
and over 50 times of pruning on the Technicolor dataset.
Sparse points from multiple timestamps contain richer but
more redundant information than sparse points from a sin-
gle timestamp (or static points). Thus, after densification
and guided sampling steps, we gradually prune Gaussians
with small spatial opacity to keep the most representative
Gaussians.



E.5. Guided Sampling

We uniformly sample from s× d to 7.5× d with small ran-
dom noise. d is the max depth in a training view. s is set as
0.7 for most scenes.

E.6. Others

We apply sigmoid function to get the final RGB color for
Neural 3D dataset and clamp function for the other two
datasets in our full model. We use a linear form of the time
variable and do not apply positional encoding on it. We use
Nvidia RTX 3090 when reporting our rendering speed in
the comparisons with other methods, and use Nvidia RTX
4090 in our real-time demos.

F. More Results

We provide per-scene quantitative comparisons on the Neu-
ral 3D Video Dataset [7] (Tab. 6), Google Immersive
Dataset [3] (Tab. 7) and Technicolor Dataset [12] (Tab. 8).
Our method outperforms the other baselines on most scenes.
We also provide per-scene Gaussian numbers of trained 50-
frame models in Tab. 9.

Figs. 6 to 8 show more visual comparisons of our full
model and our lite-version model with NeRFPlayer [13],
HyperReel [2], K-Planes [5], MixVoxels-L [14] and Dy-
namic 3DGS [10] on the Neural 3D Video Dataset [7].

Fig. 9 shows more visual comparisons on the Google
Immersive Dataset [3]. We compare the results of our full
model and lite-version model to NeRFPlayer [13] and Hy-
perReel [2].

Fig. 10 shows visual comparisons on the Technicolor
Dataset [12]. We compare the results of our full model and
lite-version model to HyperReel [2].

The above visual comparisons demonstrate that our
method preserves sharp details while containing fewer ar-
tifacts. Compared to our full model, the results of our lite-
version model are slightly blurrier.

References
[1] Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian

Richardt, and James Tompkin. Matryodshka: Real-time
6dof video view synthesis using multi-sphere images. In
European Conference on Computer Vision, pages 441–459.
Springer, 2020. 5

[2] Benjamin Attal, Jia-Bin Huang, Christian Richardt, Michael
Zollhoefer, Johannes Kopf, Matthew O’Toole, and Changil
Kim. HyperReel: High-fidelity 6-DoF video with ray-
conditioned sampling. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2023. 4, 6, 7, 8

[3] Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erick-
son, Peter Hedman, Matthew Duvall, Jason Dourgarian, Jay
Busch, Matt Whalen, and Paul Debevec. Immersive light
field video with a layered mesh representation. ACM Trans-

actions on Graphics (TOG), 39(4):86–1, 2020. 1, 5, 6, 8, 9,
13

[4] Ang Cao and Justin Johnson. Hexplane: A fast representa-
tion for dynamic scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 130–141, 2023. 7

[5] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk
Warburg, Benjamin Recht, and Angjoo Kanazawa. K-planes:
Explicit radiance fields in space, time, and appearance. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12479–12488, 2023. 6,
7

[6] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics
(TOG), 42(4):1–14, 2023. 4, 5

[7] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon
Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
Steven Lovegrove, Michael Goesele, Richard Newcombe,
et al. Neural 3d video synthesis from multi-view video. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5521–5531, 2022. 1, 4,
6, 7, 8, 9, 10, 11, 12

[8] Haotong Lin, Sida Peng, Zhen Xu, Tao Xie, Xingyi He, Hu-
jun Bao, and Xiaowei Zhou. Im4d: High-fidelity and real-
time novel view synthesis for dynamic scenes. arXiv preprint
arXiv:2310.08585, 2023. 1, 2

[9] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
ACM Trans. Graph., 38(4):65:1–65:14, 2019. 7

[10] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3d gaussians: Tracking by per-
sistent dynamic view synthesis. In 3DV, 2024. 1, 2, 6, 7

[11] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Transac-
tions on Graphics (TOG), 2019. 7

[12] Neus Sabater, Guillaume Boisson, Benoit Vandame, Paul
Kerbiriou, Frederic Babon, Matthieu Hog, Remy Gendrot,
Tristan Langlois, Olivier Bureller, Arno Schubert, et al.
Dataset and pipeline for multi-view light-field video. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition Workshops, pages 30–40, 2017. 1, 6, 8, 9,
14

[13] Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele
Chen, Junsong Yuan, Yi Xu, and Andreas Geiger. Nerf-
player: A streamable dynamic scene representation with de-
composed neural radiance fields. IEEE Transactions on Visu-
alization and Computer Graphics, 29(5):2732–2742, 2023.
4, 5, 6, 7, 8

[14] Feng Wang, Sinan Tan, Xinghang Li, Zeyue Tian, Yafei
Song, and Huaping Liu. Mixed neural voxels for fast multi-
view video synthesis. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
19706–19716, 2023. 5, 6, 7



Table 6. Per-scene quantitative comparisons on the Neural 3D Video Dataset [7]. Some methods only report part of the scenes. 1 only
includes the Flame Salmon scene. 2 excludes the Coffee Martini scene. “-” denotes results that are unavailable in prior work.

Method Avg. Coffee Martini Cook Spinach Cut Roasted Beef Flame Salmon Flame Steak Sear Steak

PSNR↑
Neural Volumes [9] 1 22.80 - - - 22.80 - -
LLFF [11] 1 23.24 - - - 23.24 - -
DyNeRF [7] 1 29.58 - - - 29.58 - -
HexPlane [4] 2 31.71 - 32.04 32.55 29.47 32.08 32.39
NeRFPlayer [13] 30.69 31.53 30.56 29.35 31.65 31.93 29.13
HyperReel [2] 31.10 28.37 32.30 32.92 28.26 32.20 32.57
K-Planes [5] 31.63 29.99 32.60 31.82 30.44 32.38 32.52
MixVoxels-L [14] 31.34 29.63 32.25 32.40 29.81 31.83 32.10
MixVoxels-X [14] 31.73 30.39 32.31 32.63 30.60 32.10 32.33
Dynamic 3DGS [10] 30.67 26.49 32.97 30.72 26.92 33.24 33.68

Ours 32.05 28.61 33.18 33.52 29.48 33.64 33.89
Ours-Lite 31.59 27.49 32.92 33.72 28.67 33.28 33.47

DSSIM1↓
NeRFPlayer [13] 0.034 0.0245 0.0355 0.0460 0.0300 0.0250 0.0460
HyperReel [2] 0.036 0.0540 0.0295 0.0275 0.0590 0.0255 0.0240
Dynamic 3DGS [10] 0.035 0.0557 0.0263 0.0295 0.0512 0.0233 0.0224

Ours 0.026 0.0415 0.0215 0.0205 0.0375 0.0176 0.0174
Ours-Lite 0.027 0.0437 0.0218 0.0209 0.0387 0.0179 0.0177

DSSIM2↓
Neural Volumes [9] 1 0.062 - - - 0.062 - -
LLFF [11] 1 0.076 - - - 0.076 - -
DyNeRF [7] 1 0.020 - - - 0.020 - -
K-Planes [5] 0.018 0.0235 0.0170 0.0170 0.0235 0.0150 0.0130
MixVoxels-L [14] 0.017 0.0244 0.0162 0.0157 0.0255 0.0144 0.0122
MixVoxels-X [14] 0.015 0.0232 0.0160 0.0146 0.0233 0.0137 0.0121
Dynamic 3DGS [10] 0.019 0.0332 0.0129 0.0161 0.0302 0.0113 0.0105

Ours 0.014 0.0250 0.0113 0.0105 0.0224 0.0087 0.0085
Ours-Lite 0.015 0.0270 0.0118 0.0112 0.0244 0.0097 0.0095

LPIPSAlex↓
Neural Volumes [9] 1 0.295 - - - 0.295 - -
LLFF [11] 1 0.235 - - - 0.235 - -
DyNeRF [7] 1 0.083 - - - 0.083 - -
HexPlane [4] 2 0.075 - 0.082 0.080 0.078 0.066 0.070
NeRFPlayer [13] 0.111 0.085 0.113 0.144 0.098 0.088 0.138
HyperReel [2] 0.096 0.127 0.089 0.084 0.136 0.078 0.077
MixVoxels-L [14] 0.096 0.106 0.099 0.088 0.116 0.088 0.080
MixVoxels-X [14] 0.064 0.081 0.062 0.057 0.078 0.051 0.053
Dynamic 3DGS [10] 0.099 0.139 0.087 0.090 0.122 0.079 0.079

Ours 0.044 0.069 0.037 0.036 0.063 0.029 0.030
Ours-Lite 0.047 0.075 0.038 0.038 0.068 0.031 0.031

[15] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng
Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang.
4d gaussian splatting for real-time dynamic scene rendering.
arXiv preprint arXiv:2310.08528, 2023. 1, 2

[16] Zhen Xu, Sida Peng, Haotong Lin, Guangzhao He, Jiaming

Sun, Yujun Shen, Hujun Bao, and Xiaowei Zhou. 4k4d:
Real-time 4d view synthesis at 4k resolution. arXiv preprint
arXiv:2310.11448, 2023. 1, 2

[17] Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. Real-
time photorealistic dynamic scene representation and render-



Table 7. Per-scene quantitative comparisons on the Google Immersive Dataset [3].

Method Avg. 01 Welder 02 Flames 04 Truck 09 Exhibit 10 Face Paint 1 11 Face Paint 2 12 Cave

PSNR↑
NeRFPlayer [13] 25.8 25.568 26.554 27.021 24.549 27.772 27.352 21.825
HyperReel [2] 28.8 25.554 30.631 27.175 31.259 29.305 27.336 30.063

Ours 29.2 26.844 30.566 27.308 29.336 30.588 29.895 29.610
Ours-Lite 27.5 25.499 29.505 24.204 27.973 28.646 28.456 27.977

DSSIM1↓
NeRFPlayer [13] 0.076 0.0910 0.0790 0.0615 0.0655 0.0420 0.0490 0.1425
HyperReel [2] 0.063 0.1050 0.0475 0.0760 0.0485 0.0435 0.0605 0.0595

Ours 0.042 0.0504 0.0349 0.0524 0.0447 0.0240 0.0320 0.0543
Ours-Lite 0.051 0.0585 0.0546 0.0684 0.0516 0.0271 0.0326 0.0630

LPIPSAlex↓
NeRFPlayer [13] 0.196 0.289 0.154 0.164 0.151 0.147 0.152 0.314
HyperReel [2] 0.193 0.281 0.159 0.223 0.140 0.139 0.195 0.214

Ours 0.081 0.098 0.059 0.087 0.073 0.055 0.063 0.133
Ours-Lite 0.095 0.119 0.070 0.115 0.087 0.067 0.062 0.143

Table 8. Per-scene quantitative comparisons on the Technicolor Dataset [12].

Method Avg. Birthday Fabien Painter Theater Trains

PSNR↑
DyNeRF [7] 31.8 29.20 32.76 35.95 29.53 31.58
HyperReel [2] 32.7 29.99 34.70 35.91 33.32 29.74

Ours 33.6 32.09 35.70 36.44 30.99 32.58
Ours-Lite 33.0 31.59 35.28 35.95 30.12 32.17

DSSIM1↓
HyperReel [2] 0.047 0.0390 0.0525 0.0385 0.0525 0.0525

Ours 0.040 0.0290 0.0471 0.0366 0.0596 0.0294
Ours-Lite 0.044 0.0330 0.0522 0.0382 0.0634 0.0324

DSSIM2↓
DyNeRF [7] 0.021 0.0240 0.0175 0.0140 0.0305 0.0190

Ours 0.019 0.0153 0.0179 0.0146 0.0287 0.0168
Ours-Lite 0.021 0.0175 0.0201 0.0154 0.0312 0.0185

LPIPSAlex↓
DyNeRF [7] 0.140 0.0668 0.2417 0.1464 0.1881 0.0670
HyperReel [2] 0.109 0.0531 0.1864 0.1173 0.1154 0.0723

Ours 0.084 0.0419 0.1141 0.0958 0.1327 0.0372
Ours-Lite 0.097 0.0532 0.1359 0.0989 0.1487 0.0492

ing with 4d gaussian splatting. In International Conference
on Learning Representations (ICLR), 2024. 1, 2



Table 9. Per-scene Gaussian numbers (K) on three datasets. For each scene, the number is averaged over 50-frame models.

Avg. 01 Welder 02 Flames 04 Truck 09 Exhibit 10 Face Paint 1 11 Face Paint 2 12 Cave

Google Immersive Dataset [3] 427 571 389 374 484 285 249 629

Avg. Coffee Martini Cook Spinach Cut Roasted Beef Flame Salmon Flame Steak Sear Steak

Neural 3D Video Dataset [7] 215 262 189 169 319 177 176

Avg. Birthday Fabien Painter Theater Trains

Technicolor Dataset [12] 374 379 295 412 313 470



Dynamic 3DGS Ours Ours-LiteMixVoxels-L

NeRFPlayerGT HyperReel K-Planes

Dynamic 3DGS Ours Ours-LiteMixVoxels-L

NeRFPlayerGT HyperReel K-Planes

Figure 6. Qualitative comparisons on the Neural 3D Video Dataset [7]. To be continued in the next page.



Dynamic 3DGS Ours Ours-LiteMixVoxels-L

NeRFPlayerGT HyperReel K-Planes

Dynamic 3DGS Ours Ours-LiteMixVoxels-L

NeRFPlayerGT HyperReel K-Planes

Figure 7. Qualitative comparisons on the Neural 3D Video Dataset [7]. To be continued in the next page.



Dynamic 3DGS Ours Ours-LiteMixVoxels-L

NeRFPlayerGT HyperReel K-Planes

Figure 8. Qualitative comparisons on the Neural 3D Video Dataset [7].



Ours Ours-LiteNeRFPlayerGT HyperReel

Figure 9. Qualitative comparisons on the Google Immersive Dataset [3].



Ours-LiteHyperReelGT Ours

Figure 10. Qualitative comparisons on the Technicolor Dataset [12].


	. Overview
	. Comparisons with Concurrent Work
	. More Ablation Study
	. Guided Sampling and Strategies of Adding Gaussians
	. Analysis on More Scenes
	. Polynomial Orders and Replacing Polynomials with MLP
	. Feature Components
	. Initialization of Features
	. Feature Rendering vs. Spherical Harmonics
	. Comparison with Per-Frame 3DGS
	. Longer Video Sequence

	. Discussions
	. Experiment Details
	. Baselines
	. Camera Models
	. Initialization
	. Density Control
	. Guided Sampling
	. Others

	. More Results

