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In this supplementary material,
1. we give more implementation details in Sec. 7, including details of framework structure (footnote 6) and hyperparameters

setup (footnote 7).
2. we introduce more about boundary normal calculation and normal calculation for rendering equation in perspective pro-

jection in Sec. 8 (footnote 6);
3. we provide an overview of the synthetic and real-world dataset in Sec. 9. We also explain how we collect and preprocess

the real-world dataset;
4. we showcase a qualitative comparison between Spin-UP and other methods on the real-world dataset in Sec. 10 (footnote

10). More results from the real-world dataset are also included in this section (footnote 10);

7. Implementation Details
7.1. Network Structure
We use the similar multi-layer perceptrons (MLPs)’ structures in [4, 5], shown in Fig. 9. The input of MLPs is pixels’ 2D
coordinate (p = (x, y)) in an image, which will pass through a positional encoding module similar in [6] calculated as

γ(p) =
(
sin

(
20πp

)
, cos

(
20πp

)
, · · · , sin

(
2Lp−1πp

)
, cos

(
2Lp−1πp

))
, (3)

where Lp is the positional code’s dimension, set as 10 for γ1(.) and 6 for γ2(.)
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Figure 9. Network structure of MLPs for depth and material estimation in Spin-UP.

*Co-first author. ‡Corresponding author.
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7.2. Loss Functions and Hyperparameters Setup

In Spin-UP, we implement:
1. L1 inverse rendering loss Lr calculated as,

∑NP

i=1

∑NI

j=1 |mij − m̂ij |.
2. Normalized color loss Lcolor, calculated as, λc∥Nor(A)−Nor(I)∥, where λc = 0.5.
3. Boundary loss Lb, calculated as the cosine similarity between the pre-computed and estimated boundary normal.
4. Smoothness terms Lsm on albedo map A, normal map N , spatially varying Gaussian bases weights cn, is calculated as,

Lsm =
λ
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where, λ = 0.01, λN = 0.02, λS = 0.01.
We train the Spin-UP in three stages similar to [5]. For the first stage, the loss Lstage1 is calculated as below for a faster
convergence.

Lstage1 = Lr + Lb + λcLcolor + Lsm, (5)

For the second stage, we drop the smoothness term on the albedo map and reduce λN to 0.05 for details refinement, where
LN = TV(N) is the smoothness term on normal map.

Lstage2 = Lr + Lb + λcLcolor + λNLN , (6)

For the third stage, we drop the smoothness terms LN to further refine the details.

Lstage3 = Lr + Lb + λcLcolor. (7)

The three stages take 500, 1000, and 500 epochs, respectively. During training, we use Adam as the optimizer with a learning
rate α = 0.001 and a batch size of 4 images per iteration.

8. Normal Calculation in Perspective View
8.1. Boundary Normal Calculation
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Figure 10. An illustration of occluding boundaries’ nor-
mal relationship with view directions for (a) front view
and (b) side view of a surface. The dotted line in (b)
indicates the outermost boundaries of an object in per-
spective projection.
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Figure 11. An illustration of (a) adjacent points’ posi-
tions for normal fitting method [5] in perspective pro-
jection, (b) Eq. (11).

In perspective projection, the surface normal is perpendicular to the object’s occluding boundaries B(x, y) and view
direction v, as shown in Fig. 10. Therefore, the boundaries’ normal nb is calculated as

nb · vb = 0, nb · (∂B
x

,
∂B

y
, 1)⊤ = 0, (8)

In practice, the outer boundaries of an object in images may not precisely match its actual boundaries due to limited image
resolution. Therefore, we add a small offset (β = 0.1) to make the pre-computed boundaries normal more accurate:

nb = Nor(nbx, nby, nbz + β). (9)



Table 5. Length, width, height, and capturing distance for SOLDIER, PLAYER, DANCER, POLICEMAN and EEVEE.

Properties SOLDIER PLAYER DANCER POLICEMAN EEVEE

Length (cm) 9.50 11.50 4.00 4.00 4.00
Width (cm) 7.00 11.00 5.00 4.00 4.00
Height (cm) 3.00 28.00 4.00 9.00 9.00
Distance (m) 0.90 0.90 0.40 0.40 0.30

8.2. Normal Calculation For Rendering Equation

The normal fitting method [5] in orthogonal projection is shown below:

n =

4∑
k=1

γknk =

4∑
k=1

γk Nor
[(
pk+1 − p

)
×
(
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)]⊤
,

γk =

∣∣dk∣∣−1∑4
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−1 , dk = zk + zk+1 − 2z,

(10)

where, pk = (xk, yk, zk) is the adjacent point of the query point p = (x, y, z) and x, y ∈ [−1, 1], k = 1 if k + 1 > 4,
as shown in Fig. 11, (a). To extend the normal fitting method to the perspective projection, we first compute the points’
coordinates in the camera coordinate system by

pk′ = (xk z
k

f
sx, y

k z
k

f
sy, z

k),

p′ = (x
z

f
sx, y

z

f
sy, z).

(11)

where f is the camera’s focal, sx and sy are half of the width and height of the camera’s frame. Replace pk and p in Eq. (10)
by pk′ and p′, we get the normal fitting method in perspective projection.

9. Datasets
9.1. Synthetic Dataset

In Fig. 12, we showcase all 5 objects with 6 materials under 5 HDR environment maps rendered by Blender Cycles1. This
results in 16 scenes2 of synthetic data that are classified into 4 groups, i.e, the shape group, light group, reflectance group,
and spatially varying group.

9.2. Real-world Dataset

The real-world dataset contains 5 objects captured under indoor and outdoor environments with spatially-varying materials.
The five real-world objects used in our study are the SOLDIER, PLAYER, POLICEMAN, DANCER, and EEVEE. The objects’
sizes are shown in Table 5.
Device introduction. SOLDIER, PLAYER, POLICEMAN, and DANCER’s observed images were captured by a customized
device shown in Fig. 13 (left), which consists of two stands (one for holding the subject being photographed, the other for
supporting the camera) and a rotating mechanism. The distance from the camera to the object is adjustable. In addition to
this, we also consider a more portable device shown in Fig. 13 (right), which is made up of a wooden rotatable platform3

with a diameter of 39mm and the camera. We capture EEVEE’s observed images based on this device.
Photographing requirements. Before photographing, the distance between the camera and the object is determined based
on the proportion of the object in the viewfinder, ensuring a balance of the occupied portion between the objects and the
camera. Three typical distances were used: 0.9 meters for large and 0.4 meters (or 0.3 meters) for small objects. During
photographing, the thumb rule is to capture a clear image with less noise and keep rotation velocity as uniform as possible.
For the camera’s parameters, we chose ISO 1600, an aperture size of f/13 for outdoor scenes; and ISO 3200, an aperture size
of f/6.3 for indoor scenes, respectively. The focal size is fixed at 31mm for different scenes.

1https://www.blender.org
2One scene representing an object with one material rendered under HDR environment maps.
3https://www.ikea.com/sg/en/p/snudda-lazy-susan-solid-wood-40176460/

https://www.blender.org
https://www.ikea.com/sg/en/p/snudda-lazy-susan-solid-wood-40176460/
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Figure 12. (a) HDR environment maps (row 1), objects (row 2), and materials (row 3) involved in the synthetic dataset. Each figure in
row 2 consists of two subfigures for 3D model preview (left) and normal map (right). Each figure in row 3 consists of two subfigures for
material rendered on a sphere (left) and albedo (right). (b) Example images from each scene in four groups.

Pre-processing pipeline. In the pre-processing pipeline, we extracted 50 images from the video at equal intervals to use as
our data. We then obtain the objects’ masks in each scene from the first frame by Photoshop. Those masks help separate
objects and backgrounds. In practice, there are translational motions in the horizontal and vertical directions, mostly obvious
on objects due to structural instability. Therefore, after calculating the relative rotation angle θj , we used a simple algorithm
for motion correction, assuming that the only motion of the object relative to the camera was translational in the horizontal
and vertical directions. Specifically, we pre-set the range of motion and iterate over the distance vector to find the distance
of movement (plus or minus 20 pixels) that minimizes the difference between the front and back frames after applying the
mask. Note that although large movement is corrected in this step, minor movements still exist and are hard to eliminate.
Fortunately, our method can tolerate those minor movements.



(a) (b) (c)

(d)

Figure 13. Left: (a) Overview of the device, (b) Stand for the camera, (c) Stand for the object being photographed with dark cloth for
interreflection removal, (d) Rotating hinge. Right: A portable version of image capturing device, shown in top and bottom views.



10. Qualitative Comparison
10.1. Qualitative Comparison on Synthetic Dataset

We show all the estimated normal maps, error maps of Spin-UP, S23 [3], S22 [2], and HY19 [1] of shape, light, reflectance,
and spatially-varying material groups in Fig. 15-Fig. 17.

Ours S23 S22 HY19
GT Normal /
Ref. Image

5.50 11.93 17.17 67.63COW (U.)

4.94 11.60 11.35 48.47COW (L.)

4.40 7.52 12.74 39.21COW (A.)

3.33 12.38 17.11 40.28COW (S.)

1(90°)0(0°)

Figure 14. The visual quality comparison among Spin-UP, S23 [3], S22 [2], and HY19 [1] on the light group in terms of normal map (row
1, 3, 5, 7), error map (row 2, 4, 6, 8). Numbers indicate the MAE for surface normal.
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Figure 15. The visual quality comparison among Spin-UP, S23 [3], S22 [2], and HY19 [1] on the shape group in terms of normal map (row
1, 3, 5, 7), error map (row 2, 4, 6, 8). Numbers indicate the MAE for surface normal.



Ours S23 S22 HY19
GT Normal /
Ref. Image

5.83 13.46 15.56 57.45POT2 (D.)

7.11 9.75 11.83 37.43POT2 (S.)

13.09 16.22 18.97 65.48READING (D.)

10.30 12.67 18.38 58.04READING (S.)
1(90°)0(0°)

Figure 16. The visual quality comparison among Spin-UP, S23 [3], S22 [2], and HY19 [1] on the reflectance group in terms of normal map
(row 1, 3, 5, 7), error map (row 2, 4, 6, 8). Numbers indicate the MAE for surface normal.



Ours S23 S22 HY19
GT Normal /
Ref. Image

5.58 14.22 18.59 40.97POT2 (D.)

6.97 11.00 17.63 37.46POT2 (S.)

12.54 14.58 22.80 49.27READING (D.)

11.52 14.31 23.75 48.96READING (S.)
1(90°)0(0°)

Figure 17. The visual quality comparison among Spin-UP, S23 [3], S22 [2], and HY19 [1] on the spatially varying material group in terms
of normal map (rows 1, 3, 5, 7), error map (rows 2, 4, 6, 8). Numbers indicate the MAE for surface normal.



10.2. Qualitative Comparison on Real-world Dataset

We show all the estimated normal maps of Spin-UP, S23 [3], and S22 [2] of real-world dataset in Fig. 18 and Fig. 19.

SOLDIER

PLAYER PLAYER

SOLDIER

Ours S23 S22 Ours S23 S22Ref. ImageRef. Image
Outdoor Indoor

POLICEMAN POLICEMAN

DANCER DANCER

Figure 18. The visual quality comparison among Spin-UP, S23 [3], and S22 [2] on the SOLDIER, PLAYER, POLICEMAN, and DANCER in
terms of the normal map. Left (right) side of the solid line: objects captured in CAMPUS (WORKPLACE) environment.



EEVEE

Ours S23 S22Ref. Image

Figure 19. The visual quality comparison among Spin-UP, S23 [3], and S22 [2] on EEVEE captured in a living room in terms of the normal
map based on more portable device.
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