
Split to Merge: Unifying Separated Modalities for
Unsupervised Domain Adaptation

Supplementary Material

Algorithm 1 Training Algorithm of UniMoS
Input: Labeled source data {xs, ys}, unlabeled target data
xt, maximum epoch number max epoch, pretrained CLIP
text encoder gtxt and vision encoder gvis.
Output: Trained modality separator Gtxt, Gvis, and trained
linear layers Φ1,Φ2.

1: Let epoch = 0.
2: while epoch < max epoch do
3: Obtain teacher output ytlac via Eq. (1).
4: if epoch mod 2 == 0 then
5: Take mixed outputs as target vision pseudo label

via Eq. (3).
6: else
7: Obtain target vision pseudo label ytvac via Eq. (2).
8: end if
9: Obtain CLIP-extracted vision features {fs

v , f
t
v} =

gvis(x
s, xt) and text features µi = gtxt(ti).

10: Obtain LAC outputs ŷlac by Eq. (4).
11: Obtain VAC outputs ŷvac by Eq. (5).
12: Obtain ensemble outputs ŷens by Eq. (7).
13: Obtain modality discrimination outputs ydis by

Eq. (6).
14: Update network parameters via Eq. (8).
15: Let epoch = epoch+ 1
16: end while
17: return solution

1. Training algorithm
For clarity, we give full training algorithm of UniMoS. We
first obtain teacher output from CLIP’s zero-shot inference
results by Eq. (1):

ytlac = (l1−l, l2−l, · · · , lk−l), li = cos(µi, f
t
v)/T. (1)

Then obtain pseudo label by Eq. (2):

ŷtvac = argmax
k

cos(f t
b , ϕk). (2)

To avoid potential error accumulations [2] in pseudo labels,
we directly apply mixed outputs from both modalities as
pseudo labels in certain epochs:

ŷtvac = λ · ŷtvac + (1− λ) · ỹtlac, (3)

where λ is a fixed mixup ratio 0.3 that combines outputs
from both modalities for inference. LAC and VAC outputs
are obtained via Eq. (4) and Eq. (5), respectively.

ŷlac = (l̂1, l̂2, · · · l̂k), l̂i = cos(µi, flac)/T. (4)

ŷvac = Φ2(fb), fb = Φ1(fvac). (5)

We further train a modality discriminator to align modality
features from both domains via Eq. (6):

Lbce = −[ydis log ŷdis + (1− ydis) log(1− ŷdis)], (6)

We assemble LAC and VAC during training to facilitate
modality information exchanges by Eq. (7):

ŷtens = w · ŷtvac + (1− w) · ỹtlac. (7)

Note that the w in Eq. (7) is trainable, which dynamically
changes to suit different training phases. While the λ in
Eq. (3) is fixed and only used for retrieving pseudo labels
and inference, thus does not affect training. Based on the
training objectives:

θGtxt
= argmin

θGtxt

Llac + γLortho + γLbce, (8)

θGvis
= argmin

θGvis

Lvac + γLortho + γLbce,

θW , θΦ1 , θΦ2 = argmin
θW ,θΦ1

,θΦ2

Lvac,

θD = argmin
θD

γLbce,

we update the trainable parameters. Training algorithm is
given in Algorithm 1. Please refer to main paper for full
descriptions of the equations above.

All trainable modules in UniMoS are fully-connected
linear layers, which brings very low computation costs.
Specifically, the modality separators Gtxt, Gvis are two
separate linear layers of shape (dv, dv). The bottleneck
feature dimension db is 256, thus Φ1 is of shape (dv ,256)
with batch normalization, and Φ2 is of shape (256,K).
The modality discriminator D consists of two linear lay-
ers (dv ,256) and (256,1) with a ReLU activation layer. The
weight generator W consists of two linear layers (dv ,256)
and (256,1) with a Sigmoid activation layer.

2. Additional experiments
In this section we provide full results of our experiments.
Mini-DomainNet. We present full results on Mini-
DomainNet [8, 13, 21] in Tab. 1 using two backbones. We
set α = 0.1, β = 1 and γ = 0.01 for all tasks. We can
observe significant improvements over current SOTA AD-
CLIP [14] by 2.8% in average with ResNet50 [4], and 0.4%
improvement using ViT [1]. We are unable to compare with



Table 1. Results on Mini-DomainNet. Best results are marked in bold font. Methods with ‘*’ are based on CLIP.

Method Backbone clp→pnt clp→rel clp→skt pnt→clp pnt→rel pnt→skt rel→clp rel→pnt rel→skt skt→clp skt→pnt skt→rel Avg.

CLIP* [11]

ResNet50

67.9 84.8 62.9 69.1 84.8 62.9 69.2 67.9 62.9 69.1 67.9 84.8 71.2
DAPrompt* [3] 72.4 87.6 65.9 72.7 87.6 65.6 73.2 72.4 66.2 73.8 72.9 87.8 74.8
ADCLIP* [14] 71.7 88.1 66.0 73.2 86.9 65.2 73.6 73.0 68.4 72.3 74.2 89.3 75.2

UniMoS* (ours) 76.0 88.9 72.1 75.5 89.2 71.1 75.1 75.9 70.5 76.4 76.3 88.9 78.0

CLIP* [11]

ViT-B

80.3 90.5 77.8 82.7 90.5 77.8 82.7 80.3 77.8 82.7 80.3 90.5 82.8
DAPrompt* [3] 83.3 92.4 81.1 86.4 92.1 81.0 86.7 83.3 80.8 86.8 83.5 91.9 85.8
ADCLIP* [14] 84.3 93.7 82.4 87.5 93.5 82.4 87.3 84.5 81.6 87.9 84.8 93.0 86.9

UniMoS* (ours) 86.2 93.2 83.2 86.9 93.2 83.2 86.8 86.0 82.8 87.0 86.2 93.3 87.3

Table 2. Results on Office-Home. Best results are marked in bold font. Methods with ‘*’ are based on CLIP.

Method Backbone A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

SourceOnly [4]

ResNet50

34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
ParetoDA [6] 56.8 75.9 80.5 64.4 73.5 73.7 65.6 55.2 81.3 75.2 61.1 83.9 70.6
CLIP* [11] 51.7 81.5 82.3 71.7 81.5 82.3 71.7 51.7 82.3 71.7 51.7 81.5 71.8
SDAT [12] 58.2 77.1 82.2 66.3 77.6 76.8 63.3 57.0 82.2 74.9 64.7 86.0 72.2
MSGD [18] 58.7 76.9 78.9 70.1 76.2 76.6 69.0 57.2 82.3 74.9 62.7 84.5 72.3
Fixbi [10] 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
CST [9] 59.0 79.6 83.4 68.4 77.1 76.7 68.9 56.4 83.0 75.3 62.2 85.1 72.9

ATDOC [7] 60.2 77.8 82.2 68.5 78.6 77.9 68.4 58.4 83.1 74.8 61.5 87.2 73.2
KUDA [15] 58.2 80.0 82.9 71.1 80.3 80.7 71.3 56.8 83.2 75.5 60.3 86.6 73.9

DAPrompt* [3] 54.1 84.3 84.8 74.4 83.7 85.0 74.5 54.6 84.8 75.2 54.7 83.8 74.5
EIDCo [22] 63.8 80.8 82.6 71.5 80.1 80.9 72.1 61.3 84.5 78.6 65.8 87.1 75.8
ICON [20] 63.3 81.3 84.5 70.3 82.1 81.0 70.3 61.8 83.7 75.6 68.6 87.3 75.8

ADCLIP* [14] 55.4 85.2 85.6 76.1 85.8 86.2 76.7 56.1 85.4 76.8 56.1 85.5 75.9
PADCLIP* [5] 57.5 84.0 83.8 77.8 85.5 84.7 76.3 59.2 85.4 78.1 60.2 86.7 76.6

UniMoS* (ours) 59.5 89.4 86.9 75.2 89.6 86.8 75.4 58.4 87.2 76.9 59.5 89.7 77.9
SourceOnly [1]

ViT-B

54.7 83.0 87.2 77.3 83.4 85.5 74.4 50.9 87.2 79.6 53.8 88.8 75.5
CLIP* [11] 67.8 89.0 89.8 82.9 89.0 89.8 82.9 67.8 89.8 82.9 67.8 89.0 82.4
TVT [19] 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6

DAPrompt* [3] 70.6 90.2 91.0 84.9 89.2 90.9 84.8 70.5 90.6 84.8 70.1 90.8 84.0
SSRT [16] 75.2 89.0 91.1 85.1 88.3 89.9 85.0 74.2 91.2 85.7 78.6 91.8 85.4

ADCLIP* [14] 70.9 92.5 92.1 85.4 92.4 92.5 86.7 74.3 93.0 86.9 72.6 93.8 86.1
PADCLIP* [5] 76.4 90.6 90.8 86.7 92.3 92.0 86.0 74.5 91.5 86.9 79.1 93.1 86.7

UniMoS* (ours) 74.9 94.0 92.5 86.4 94.3 92.5 86.0 73.9 93.0 86.4 74.2 94.5 86.9

CLIP* [11]

ViT-L

74.2 93.1 93.3 87.3 93.1 93.3 87.3 74.2 93.3 87.3 74.2 93.1 87.0
DAPrompt* [3] 77.3 94.6 94.3 88.6 94.6 94.0 88.8 76.8 94.0 89.0 77.8 94.4 88.7
ADCLIP* [14] 80.3 95.4 95.7 90.9 95.5 95.2 90.1 79.6 95.1 90.8 81.1 95.9 90.5

UniMoS* (ours) 80.9 96.2 95.1 90.1 96.1 95.1 90.0 81.4 95.2 89.9 81.6 96.3 90.7

PADCLIP [5] since no public code implementation is avail-
able yet.
Office-Home. We provide full results on Office-Home [17]
in Tab. 2 using ResNet50 and two variants of ViT as
backbone. Utilizing the rich pretrain knowledge in CLIP,
CLIP-based methods achieve higher accuracies than single-
modality UDA methods. Our method further consis-
tently outperforms all competing methods on all backbones,
demonstrating the efficacy of adapting both modalities.
Computation analysis. We provide comprehensive com-
putation analysis in Tab. 3. The GPU memory consumption
is computed using consistent batch size of 32. The results
on DomainNet is computed on task ‘clp→inf’. Note our
method requires only one forward through CLIP to obtain
pre-extracted features, and we have included the time for

pre-extraction in the ‘Train time’ columns. According to
Sec. 1, only a few linear layers is trained in our method,
which brings significant computation efficiency, allowing
agile applications of our method. We can observe that
the trainable parameters of DAPrompt differs on different
datasets. The reason is that DAPrompt trains the prompt
embedding for each class respectively, therefore the train-
able parameters and GPU consumption increase drastically
as class number increases from 12 (VisDA) to 345 (Do-
mainNet).

Learnable ensemble weight w. Fig. 1 provides additional
examples on the effects of dynamic ensemble weight on
three tasks from Office-Home dataset. We can draw the con-
clusion that the accuracy of VAC drops drastically without
learning ensemble weight w, which further affects the over-



0 10 20 30 40 50
Epoch

66

68

70

72

74

76

A
cc

.

0.0

0.2

0.4

0.6

0.8

1.0

w
ei

gh
t

Office-Home, C->A

LAC output

VAC output

VAC output w/o 
 learnable w

Mixed output

Learned weight w

Mixed output w/o 
 learnable w

(a) Task C→A

0 10 20 30 40 50
Epoch

84

85

86

87

88

89

90

A
cc

.

0.0

0.2

0.4

0.6

0.8

1.0

w
ei

gh
t

Office-Home, P->R

LAC output

VAC output

VAC output w/o 
 learnable w

Mixed output

Learned weight w

Mixed output w/o 
 learnable w

(b) Task P→R

0 10 20 30 40 50
Epoch

48

50

52

54

56

58

60

A
cc

.

0.0

0.2

0.4

0.6

0.8

1.0

w
ei

gh
t

Office-Home, A->C

LAC output

VAC output

VAC output w/o 
 learnable w

Mixed output

Learned weight w

Mixed output w/o 
 learnable w

(c) Task A→C

Figure 1. Examples on the effects of ensemble weight w.

Table 3. Computation analysis. Best results are marked in bold font. Methods with ‘*’ are based on CLIP.

Method Dataset Backbone Param. Throughput (imges/s) Train time FLOPs GPU mem. Acc.

DAPrompt* 1.2M 244 4.3H 11.3G 6.9G 86.9
FixBi 86.1M 102 5.5H 15.73G 17.0G 87.2
CAN 42.5M 31 10.5H 7.9G 11.3G 87.2

PADCLIP* - - 23.5H - - 88.5
UniMoS* (ours)

VisDA ResNet101

0.79M 2667 0.5H <0.01G 1.8G 88.1

PMTrans
DomainNet

Swin 89.5M 46 30H 15.2G 19.3G 52.4

DAPrompt* 34.5M 31 7.9H 73.9G 22.5G 59.8
UniMoS* (ours) ViT-B 0.79M 2827 0.4H <0.01G 2.9G 63.6

all mixed output accuracy. We can observe in Fig. 1b that
although accuracy of ‘VAC output w/o learnable w’ is lower
than the full design, the final ‘Mixed output w/o learnable
w’ achieves comparable accuracy with the full design. The
reason is that the task P→R is relatively easier, thus com-
plementary knowledge in LAC is able to support VAC for
classification.

References
[1] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In International Con-
ference on Learning Representations, 2020.

[2] Yulu Gan, Yan Bai, Yihang Lou, Xianzheng Ma, Renrui
Zhang, Nian Shi, and Lin Luo. Decorate the newcomers:
Visual domain prompt for continual test time adaptation.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence, pages 7595–7603, 2023.

[3] Chunjiang Ge, Rui Huang, Mixue Xie, Zihang Lai, Shiji
Song, Shuang Li, and Gao Huang. Domain adaptation via
prompt learning. IEEE Transactions on Neural Networks
and Learning Systems, pages 1–11, 2023.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[5] Zhengfeng Lai, Noranart Vesdapunt, Ning Zhou, Jun Wu,

Cong Phuoc Huynh, Xuelu Li, Kah Kuen Fu, and Chen-Nee
Chuah. Padclip: Pseudo-labeling with adaptive debiasing
in clip for unsupervised domain adaptation. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 16155–16165, 2023.

[6] Jian Liang, Kaixiong Gong, Shuang Li, Chi Harold Liu, Han
Li, Di Liu, Guoren Wang, et al. Pareto domain adapta-
tion. Advances in Neural Information Processing Systems,
34:12917–12929, 2021.

[7] Jian Liang, Dapeng Hu, and Jiashi Feng. Domain adaptation
with auxiliary target domain-oriented classifier. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 16632–16642, 2021.

[8] Mattia Litrico, Alessio Del Bue, and Pietro Morerio. Guid-
ing pseudo-labels with uncertainty estimation for source-
free unsupervised domain adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7640–7650, 2023.

[9] Hong Liu, Jianmin Wang, and Mingsheng Long. Cycle self-
training for domain adaptation. Advances in Neural Infor-
mation Processing Systems, 34:22968–22981, 2021.

[10] Jaemin Na, Heechul Jung, Hyung Jin Chang, and Wonjun
Hwang. Fixbi: Bridging domain spaces for unsupervised
domain adaptation. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
1094–1103, 2021.

[11] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-



sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021.

[12] Harsh Rangwani, Sumukh K Aithal, Mayank Mishra, Ar-
ihant Jain, and Venkatesh Babu Radhakrishnan. A closer
look at smoothness in domain adversarial training. In In-
ternational Conference on Machine Learning, pages 18378–
18399. PMLR, 2022.

[13] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Dar-
rell, and Kate Saenko. Semi-supervised domain adaptation
via minimax entropy. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 8050–8058,
2019.

[14] Mainak Singha, Harsh Pal, Ankit Jha, and Biplab Banerjee.
Ad-clip: Adapting domains in prompt space using clip. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4355–4364, 2023.

[15] Tao Sun, Cheng Lu, and Haibin Ling. Prior knowledge
guided unsupervised domain adaptation. In European Con-
ference on Computer Vision, pages 639–655. Springer, 2022.

[16] Tao Sun, Cheng Lu, Tianshuo Zhang, and Haibin Ling. Safe
self-refinement for transformer-based domain adaptation. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 7191–7200, 2022.

[17] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 5018–5027, 2017.

[18] Haifeng Xia, Taotao Jing, and Zhengming Ding. Maximum
structural generation discrepancy for unsupervised domain
adaptation. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 45(3):3434–3445, 2022.

[19] Jinyu Yang, Jingjing Liu, Ning Xu, and Junzhou Huang.
Tvt: Transferable vision transformer for unsupervised do-
main adaptation. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 520–
530, 2023.

[20] Zhongqi Yue, Hanwang Zhang, and Qianru Sun. Make the
u in uda matter: Invariant consistency learning for unsuper-
vised domain adaptation. arXiv preprint arXiv:2309.12742,
2023.

[21] Wenyu Zhang, Li Shen, and Chuan-Sheng Foo. Rethinking
the role of pre-trained networks in source-free domain adap-
tation. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 18841–18851, 2023.

[22] Yixin Zhang, Zilei Wang, Junjie Li, Jiafan Zhuang, and Zi-
han Lin. Towards effective instance discrimination con-
trastive loss for unsupervised domain adaptation. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pages 11388–11399, 2023.


	. Training algorithm
	. Additional experiments

