
A. Ablation on Scheduler and Denoising Steps
The main paper uses a 25-step DDIM scheduler as the de-
fault configuration. We provide an additional study on the
choice of scheduler type and denoising steps in Tab. 4. We
find that the widely adopted DDIM scheduler already yields
satisfactory performance, which is comparable to or even
better than second-order counterparts such as DPM. We also
find that 25 denoising steps are good enough for generative
quality, while increasing the inference steps to 50 has mini-
mal impact on performance.

Table 4. Ablation study on denoising scheduler and steps. We
choose TextCraftor on all rewards as the baseline model.

Scheduler Steps Aesthetic PickScore HPSv2
DDIM 25 5.8800 19.157 0.2805
DDIM 50 6.0178 19.121 0.2769
PNDM 25 5.0991 18.479 0.2632
PNDM 50 5.9355 19.026 0.2748
DPM 25 5.8564 19.145 0.2803
Euler 25 5.9098 19.151 0.2804

B. Weight of Reward Functions
With TextCraftor, it is free to choose different reward func-
tions and different weights as the optimization objective.
For simplicity, in the main paper, we scale all the rewards to
the same magnitude. We report empirical results by setting
the weight of CLIP constraint to 100, Aesthetic reward as
1, PickScore as 1, and HPSv2 as 100. In Tab. 5, we provide
an additional ablation study on different reward weights.
Specifically, we train TextCraftor with emphasis on CLIP
regularization, Aesthetic score, PickScore, and HPSv2 re-
spectively. We can observe that assigning a higher weight to
a specific reward simply results in better scores. TextCraftor
is flexible and readily applicable to different user scenarios
and preferences. We observe the issue of repeated objects
in Fig. 9, which is introduced along with UNet fine-tuning.
Thus, we ablate TextCraftor+UNet fine-tuning with differ-

Figure 7. Adjusting reward weights can further reduce artifacts
(repeated objects.)

ent weights of rewards. We find that HPSv2 is the major
source of repeated objects. We show in Fig. 7 that we can re-
move the repeated sloth and chimpanzee by using a smaller
weight of HPSv2 reward.

C. Ablation of Training and Testing Steps.
As discussed in Section 3.2, the reward fine-tuning intro-
duces a long chain for gradient propagation. With the dan-
ger of gradient explosion and vanishing, it is not necessarily
optimal to fine-tune over all timesteps. In Tab. 6, we per-
form the analysis on the training and evaluation steps for
TextCraftor. We find that training with 5 gradient steps and
evaluating the fine-tuned text encoder with 15 out of the to-
tal 25 steps gives the most balanced performance. In all of
our experiments and reported results, we employ this con-
figuration.

D. Discussion on Training Cost and Data
TextCraftor is trained on 64 NVIDIA A100 80G GPUs,
with batch size 4 per GPU. We report all empirical re-
sults of TextCraftor by training 10K iterations, and the
UNet fine-tuning (TextCraftor+UNet) with another 10K it-
erations. Consequently, TextCraftor observes 2.56 million
data samples. TextCraftor overcomes the collapsing issue
thus eliminating the need for tricks like early stopping. The
estimated GPU hour for TextCraftor is about 2300. Fine-
tuning larger diffusion models can lead to increased train-
ing costs. However, TextCraftor has a strong generalization
capability. As in Fig 10, the fine-tuned SDv1.5 text encoder
(ViT-L) can be directly applied to SDXL [34] to generate
better results (for each pair, left: SDXL, right: SDXL +
TextCraftor-ViT-L). Note that SDXL employs two text en-
coders and we only replace the ViT-L one. Therefore, to
reduce the training cost on larger diffusion models, one in-
teresting future direction is to fine-tune their text encoder
within a smaller diffusion pipeline, and then do inference
directly with the larger model.

E. Interpretability
We further demonstrate the enhanced semantic understand-
ing ability of TextCraftor in Fig. 8. Similar to Prompt
to Prompt [16], we visualize the cross-attention heatmap
which determines the spatial layout and geometry of the
generated image. We discuss two failure cases of the base-
line model in Fig. 8. The first is misaligned semantics, as
the purple hat of the corgi. We can see that the hat in pixel
space correctly attends to the word purple, but in fact, the
color is wrong (red). Prompt engineering does not resolve
this issue. While in TextCraftor, color purple is correctly
reflected in the image. The second failure case is missing
elements. SDv1.5 sometimes fails to generate desired ob-
jects, i.e., Eiffel Tower or desert, where there is hardly any
attention energy upon the corresponding words. Prompt en-
gineering introduces many irrelevant features and styles, but
can not address the issue of the missing desert. While with
TextCraftor, both Eiffel Tower and desert are correctly un-
derstood and reflected in the image. We show that (i) Fine-

Table 5. Ablation study on different reward weights. The reported results are TextCraftor for text encoder only.

Weight Score
CLIP Aesthetic PickScore HPSv2 CLIP Aesthetic PickScore HPSv2
200 3 1 100 0.2952 6.0900 19.123 0.2757
100 6 1 100 0.2385 7.1680 19.435 0.2730
100 3 2 100 0.2615 6.6831 19.494 0.2798
100 3 1 200 0.2711 6.4020 19.306 0.2850

Table 6. Analysis of training and evaluation steps for fine-tuned
text encoder. We report results on Parti-Prompts [59].

Train Test Aes PickScore HPSv2
SDv1.5 25 5.2634 18.834 0.2703

5 5 6.0688 19.195 0.2835
5 10 6.3871 19.336 0.2847
5 15 6.5295 19.355 0.2828
5 25 6.5758 19.071 0.2722

10 10 5.8680 19.158 0.2799
15 15 5.3533 18.919 0.2735

tuning the text encoder improves its capability and has the
potential to correct some inaccurate semantic understand-
ings. (ii) Finetuning text encoder helps to emphasize the
core object, reducing the possibility of missing core ele-
ments in the generated image, thus improves text-image
alignment, as well as benchmark scores.

F. Applications
We apply TextCraftor on ControlNet [60] and image in-
painting for zero-shot evaluation (i.e., the pre-trained text
encoder from TextCraftor is directly applied on these tasks),
as in Fig. 11 and Fig. 12. We can see that TextCraftor can
readily generalize to downstream tasks (with the same pre-
trained baseline model, i.e., SDv1.5), and achieves better
generative quality.

G. More Qualitative Results
We provide more qualitative visualizations in Fig. 9
to demonstrate the performance and generalization of
TextCraftor.

SDv1.5: a corgi wearing a red bowtie and a purple party hat.

TextCraftor: a corgi wearing a red bowtie and a purple party hat.

Prompt Engineering: a corgi wearing a red bowtie and a purple party hat , Graceful body structure,cute,Symmetrical face,highly
detailed,elegant,Marc Simonetti and Caspar David Friedrich, Trending on artstation,depicted as a scifi scene,highly detailed matte painting.

SDv1.5: the Eiffel Tower in a desert

TextCraftor: the Eiffel Tower in a desert

Prompt Engineering: the Eiffel Tower in a desert, anime fantasy illustration by tomoyuki yamasaki, kyoto studio, madhouse, ufotable,
comixwave films, trending on artstation pixiv, background car up in road, low angle view, epic sky, cinematic lighting, sun shaft, clouds

Figure 8. Illustration of the enhanced semantic understanding in TextCraftor, visualized by the cross-attention heatmap.

A smiling sloth wearing a bowtie and holding a quarterstaff and a big book.
A shiny VW van parked on grass.

A map of the United States made out of sushi on the table.

a photograph of the mona lisa drinking coffee as she has her breakfast. her plate has an
omelette and croissant.

a chimpanzee wearing a bowtie and playing a piano A white-haired girl in a pink sweater looks out a window in her bedroom.

A toast with black sunglasses and a blue flower on the top right corner.

A product still of metallic black and white Nike shoes with
a red glowing swoosh, styled after Darth Vader.

A fox wearing a yellow dress.

there is a chocolate cake and ice cream on a plate

A tiger wearing a train conductor's hat and holding a
skateboard decorated with a yin-yang symbol.

A dignified beaver wearing glasses, a vest, and colorful neck tie. He stands
next to a tall stack of books in a library.

an old-fashioned cocktail

Figure 9. Additional visualizations. Left: generated images on Parti-Prompts, in the order of SDv1.5, prompt engineering, DDPO,
TextCraftor, and TextCraftor + UNet. Right: examples from HPSv2, ordered as SDv1.5, prompt engineering, TextCraftor, and
TextCraftor + UNet.

a snake curled around a
wooden post

an ornate gold harp a satellite image...mountain to
the north...cloud covering...

 a laptop with a maze
sticker on it

a stop sign with 'ALL WAY'
written below it

Figure 10. Applying the fine-tuned SDv1.5 text encoder (ViT-L) under TextCraftor to SDXL can improve the generation quality, e.g., better
text-image alignment. For each pair of images, the left one is generated using SDXL and the right one is from SDXL+TextCraftor.

Pose2image. Prompt: An old man cooking in kitchen, vintage.

Scrible2image. Prompt: Backpack for iron man.

Figure 11. Applying the fine-tuned SDv1.5 text encoder (ViT-L)
under TextCraftor to ControlNet improves the generation quality.
From left to right: input condition, SDv1.5, TextCraftor + SDv1.5
UNet.

Initial Image Mask SDv1.5 TextCraftor

Figure 12. Applying TextCraftor on inpainting task can improve
the generation quality. The prompt in the example is concept art
digital painting of an elven castle, inspired by lord of the rings.

	. Introduction
	. Related Works
	. Method
	. Preliminaries of Latent Diffusion Models
	. Text Encoder Fine-tuning with Reward Propagation
	Directly Fine-tuning with Reward
	Prompt-Based Fine-tuning

	. Loss Function
	. UNet Fine-tuning with Reward Propagation

	. Experiments
	. Controllable Generation
	. Ablation Analysis

	. Conclusion
	. Ablation on Scheduler and Denoising Steps
	. Weight of Reward Functions
	. Ablation of Training and Testing Steps.
	. Discussion on Training Cost and Data
	. Interpretability
	. Applications
	. More Qualitative Results

