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A. Dataset

Class-Incremental Task Dataset: New classes are incre-
mentally introduced over time. The dataset starts with a
subset of classes, and new classes are added in subsequent
stages, allowing models to learn and adapt to an increasing
number of classes.

• CIFAR10: A dataset with 10 object classes, including
various common objects, animals, and vehicles. It con-
sists of 50,000 training images and 10,000 test images.

• CIFAR100: Similar to CIFAR10, but with 100 fine-
grained object classes. It has 50,000 training images and
10,000 test images.

• Tiny-ImageNet: A subset of the ImageNet dataset with
200 object classes. It contains 100,000 training images,
10,000 validation images, and 10,000 test images.

Domain-Incremental Task Dataset: New domains are in-
troduced gradually. The dataset initially contains samples
from a specific domain, and new domains are introduced at
later stages, enabling models to adapt and generalize to new
unseen domains.

• Digit10: Digit-10 dataset contains 10 digit categories
in four domains: MNIST[19], EMNIST[3], USPS[13],
SVHN[34].Each dataset is a digit image classification
dataset of 10 classes in a specific domain, such as hand-
writing style.
– MNIST: A dataset of handwritten digits with a training

set of 60,000 examples and a test set of 10,000 exam-
ples.

– EMNIST: An extended version of MNIST that in-
cludes handwritten characters (letters and digits) with
a training set of 240,000 examples and a test set of
40,000 examples.

– USPS: The United States Postal Service dataset con-
sists of handwritten digits with a training set of 7,291
examples and a test set of 2,007 examples.

– SVHN: The Street View House Numbers dataset con-
tains images of house numbers captured from Google
Street View, with a training set of 73,257 examples and
a test set of 26,032 examples.

• Office31: A dataset with images from three different
domains: Amazon, Webcam, and DSLR. It consists of 31
object categories, with each domain having around 4,100
images.

• DomainNet: A large-scale dataset with images from six
different domains: Clipart, Painting, Real, Sketch, Quick-
draw, and Infograph. It contains over 0.6 million images
across 345 categories.

B. Baseline
• Representative FL models:

– FedAvg: : It is a representative federated learning
model, which aggregates client parameters in each
communication. It is a simply yet effective model for
federated learning.

– FedProx: It is also a representative federated learning
model, which is better at tackling heterogeneity in fed-
erated networks than FedAvg

• Custom methods:
– Fixed: we train the model only from the first task and

evaluate it for all the coming sequence of tasks.
– DANN+FL: Here we adopt the robust adversarial-

based method DANN[9]. This baseline mainly fol-
lows the domain adaptation paradigm which is differ-
ent from the incremental learning setting and are often
prone to issues like catastrophic forgetting.

– Shared: Inspired by the multi-task learning
scenario[40], we adopt all front layers before the
last fully connected layer as shared layers, and use
relevant different fully-connected layers to get outputs
for different tasks.

• Models for federated class-incremental learning:
– FCIL: This approach addresses the federated class-

incremental learning and trains a global model by com-
puting additional class-imbalance losses. A proxy
server is introduced to reconstruct samples to help
clients select the best old models for loss computation.

– FedCIL: This approach employs the ACGAN back-
bone to generate synthetic samples to consolidate the
global model and align sample features in the output
layer. Authors conduct experiments in the FCIL sce-
nario, and here we adopt it to our FDIL setting.

C. Configurations
For local training, the batch size is 64, learning rate for
our models is 0.01/0.001 for {Office31, CIFAR10, CI-
FAR100}/{Digit10, DomainNet, Tiny-ImageNet}. For the
update of the personalized informative model, the epoch is
set to 40 for each client. For the multi-task learning struc-
ture in our approach, we treat all previous layers before the
last fully-connected layer as share layers, and we use two
different fully-connected layers to get outputs as the aux-
iliary classifier result and target classification result. We
build the Virtual Machine(VM) to simulate the experiment
environment and set up different processes to simulate dif-
ferent clients. The VM is configured with 8 RTX4090 and
6 2.3GHz Intel Xeon CPUs.



D. Detailed Re-Fed Framework with FedAvg

Algorithm 2: Re-Fed for FIL with FedAvg Algorithm
Input: T : communication round; K: number of clients; ⌘: learning rate; {T t}nt=1: distributed dataset with n tasks;

w: parameter of the model; vk: personalized informative model in client k; �: factor of information
proportion.

1 Initialize the parameter w;
2 for c = 1 to T do // When the t-th new task arrives
3 Server randomly selects a subset of devices St and send wt�1 to them;
4 for each selected client k 2 St in parallel do
5 Receive the distributed global model wt�1 and initializess the personalized informative model vt�1

k ;
6 Update vt�1

k in s local iterations with previous local samples T t�1
k,local:

7 vt�1
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8 for During the update of vt�1
k do

9 Calculate the importance score for the sample (x̃(i)
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k,t�1) after total s iterations:
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11 end
12 Cache previous samples with higher importance scores;
13 Train the local model with cached samples and the new task (x̃(i)
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k,t) in s iterations:
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15 Send the model wt
k back to the server.

16 end
17 The server aggregates the local models: wt =

P
k2St

1
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t
k.

18 end

E. Experimental Results
In this section, we further provide more details about the experiment results on the test accuracy and communication rounds.
We record the test accuracy of the global model at training stage of each task and the communication rounds required to
achieve the corresponding performance. Then, as we use a form of “Early-Emphasis” to accumulate the gradient norms and
calculate the sample importance scores in Re-Fed, we compare and show results with two other methods of calculation of
sample importance scores.

E.1. Detailed Results of Test Accuracy.
Table 5, 6, 7, 8 and 9 show the results of test accuracy on each incremental task in the Acc (Accuray) line, where “�” denotes
the improvement of our method with other baselines. Here we measure average accuracy over all tasks on each client in the
Acc line and highlight the best test accuracy in bold.

E.2. Detailed Results of Communication Round.
Table 5, 6, 7, 8 and 9 show the detailed results of communication round on each incremental task in the CoR (Communication
Round) line and highlight the results of fewest number of communication rounds in underline.

E.3. Different Weighting Methods for Gradient Norms.
Table 10 shows the impact of using different methods to calculate the sample importance score with gradient norms in the
update of personalized informative models. Here we adopt three methods: Average Weighting: we assign an equal weight
to gradient norms from different iterations; Early-Emphasis: a higher weight to gradient norms in the early-training as



adopted by Re-Fed; and Late-Emphasis: the sorting of samples with the sample importance score obtained by the method
of Early-Emphasis is reversed.

Table 5. Performance comparisons of various methods on CIFAR10 with 5 incremental tasks (2 new classes for each task).

CIFAR10 (↵ = 1.0)
Method Target 2 4 6 8 10 Avg �(")

FedAvg Acc
CoR

92.65
142

76.67
123

42.90
125

40.46
98

26.73
119

55.88
122

2.57"
10"

FedProx Acc
CoR

92.39
153

74.18
137

39.84
141

37.55
123

25.87
132

53.97
137

4.48"
25"

Fixed Acc
CoR

92.65
142

62.48
0

36.54
0

24.20
0

19.21
0

47.02
/

11.43"
/

DANN+FL Acc
CoR

93.07
151

77.81
140

44.32
150

36.98
126

24.86
145

55.41
142

3.04"
30"

Shared Acc
CoR

92.65
142

76.19
117

42.15
116

38.24
83

23.91
118

54.63
115

3.82"
3"

FCIL Acc
CoR

92.65
142

78.07
125

43.66
108

40.28
92

25.04
121

55.94
118

2.51"
6"

FedCIL Acc
CoR

94.05
148

80.22
150

46.19
146

35.50
147

27.35
150

56.66
148

1.79"
36"

Re-Fed Acc
CoR

92.65
142

79.23
109

47.41
116

43.75
85

29.22
106

58.45
112 /

Table 6. Performance comparisons of various methods on CIFAR100 with 10 incremental tasks (10 new classes for each task).

CIFAR100 (↵ = 5.0)
Method Target 10 20 30 40 50 60 70 80 90 100 Avg �(")

FedAvg Acc
CoR

58.70
137

43.72
121

48.69
76

38.28
135

30.81
102

26.16
143

24.90
90

20.72
86

18.97
132

17.21
75

32.82
110

5.57"
6"

FedProx Acc
CoR

56.51
146

42.02
134

48.03
112

39.11
139

32.33
119

27.24
140

26.50
125

20.88
105

19.67
132

18.03
99

33.03
125

5.36"
21"

Fixed Acc
CoR

58.70
137

34.52
0

35.09
0

30.37
0

27.01
0

23.96
0

18.18
0

14.78
0

11.47
0

9.27
0

26.34
/

12.05"
/

DANN+FL Acc
CoR

58.82
145

44.12
129

46.84
123

39.66
138

31.54
124

27.93
134

24.21
112

24.03
109

21.32
129

19.73
121

33.82
126

4.57"
22"

Shared Acc
CoR

58.70
137

42.53
117

48.49
82

39.10
137

31.88
113

27.39
137

25.85
103

25.74
97

24.35
135

18.30
89

34.23
115

4.16"
11"

FCIL Acc
CoR

58.70
137

45.65
123

51.87
77

42.37
134

37.32
105

32.01
140

29.00
96

28.47
88

24.99
130

23.02
73

37.33
110

1.06"
6"

FedCIL Acc
CoR

61.20
146

47.05
138

49.66
123

38.14
131

32.69
125

24.11
143

23.90
122

23.99
129

19.89
130

17.98
126

33.86
131

4.53"
27"

Re-Fed Acc
CoR

58.70
137

43.66
104

53.53
80

40.17
105

38.71
93

35.96
121

31.25
85

28.77
105

27.53
120

25.61
87

38.39
104 /



Table 7. Performance comparisons of various methods on Tiny-ImageNet with 10 incremental tasks (20 new classes for each task).

Tiny-ImageNet (↵ = 10.0)
Method Target 20 40 60 80 100 120 140 160 180 200 Avg �(")

FedAvg Acc
CoR

85.80
132

68.58
143

57.22
139

43.75
125

40.52
107

41.13
97

34.10
128

29.59
121

28.40
109

27.58
98

45.67
120

5"
7"

FedProx Acc
CoR

82.02
127

66.15
140

54.32
142

40.57
134

38.80
120

38.99
113

30.59
114

24.12
121

22.76
110

21.82
108

42.01
123

8.66"
10"

Fixed Acc
CoR

85.80
132

51.07
0

30.94
0

28.11
0

25.30
0

24.26
0

19.48
0

17.18
0

14.66
0

12.34
0

30.91
/

19.76"
/

DANN+FL Acc
CoR

85.24
138

68.16
140

55.32
141

41.11
131

36.45
124

35.38
126

28.83
137

24.54
128

21.09
121

20.77
123

41.69
131

8.98"
18"

Shared Acc
CoR

85.80
132

67.21
135

56.49
145

42.05
125

40.17
119

37.59
127

28.61
129

25.90
116

23.89
130

22.19
125

42.99
128

7.68"
15"

FCIL Acc
CoR

85.80
132

71.94
130

61.02
127

50.73
112

44.25
106

42.40
109

36.96
124

34.51
122

31.36
121

29.58
108

48.86
119

1.81"
6"

FedCIL Acc
CoR

86.43
146

69.39
144

58.11
137

45.74
121

41.02
117

38.93
126

31.29
132

27.65
140

25.17
124

24.41
129

44.81
132

5.86"
19"

Re-Fed Acc
CoR

85.80
132

72.06
120

65.29
126

52.39
121

45.93
91

42.15
103

38.88
110

36.95
114

35.19
112

32.07
92

50.67
113 /

Table 8. Performance comparisons of various methods on Digit10 with 4 domains and Office-31 with 3 domains.

Digit10 (↵ = 0.1) Office-31 (↵ = 1.0)
Method Target MNIST EMNIST USPS SVHN Avg �(") Amazon Dlsr Webcam Avg �(")

FedAvg Acc
CoR

92.82
112

88.62
82

84.02
96

77.59
122

85.76
103

3.99"
22"

58.08
144

31.62
136

39.25
135

42.98
138

8.76"
9"

FedProx Acc
CoR

93.07
114

87.43
93

85.67
89

79.09
118

86.32
103

3.43"
22"

58.69
145

34.25
146

43.01
139

45.32
143

6.42"
14"

Fixed Acc
CoR

92.82
112

85.35
0

82.11
0

71.26
0

82.48
/

7.27"
/

58.08
144

24.56
0

37.44
0

40.03
/

11.71"
/

DANN+FL Acc
CoR

96.07
132

87.30
107

82.81
116

76.44
129

85.66
120

4.09"
39"

59.95
149

42.21
144

45.21
141

49.12
145

2.62"
16"

Shared Acc
CoR

92.82
112

82.10
76

80.36
84

74.77
103

82.51
93

7.24"
12"

58.08
144

35.33
122

37.55
124

43.65
130

8.09"
1"

FCIL Acc
CoR

92.82
112

88.62
82

84.02
96

77.59
122

85.76
103

3.99"
22"

58.08
144

31.62
136

39.25
135

42.98
138

8.76"
9"

FedCIL Acc
CoR

94.61
118

90.24
86

87.55
92

83.85
125

89.06
105

0.69"
24"

59.37
146

45.91
139

46.26
148

50.51
144

1.23"
15"

Re-Fed Acc
CoR

92.82
112

91.64
68

88.57
73

85.96
71

89.75
81 / 58.08

144
47.07
125

50.80
118

51.74
129 /



Table 9. Performance comparisons of various methods on DomainNet with 6 domains.

DomainNet (↵ = 10)
Method Target Clipart Infograph Painting Quickdraw Real Sketch Avg �(")

FedAvg Acc
CoR

52.07
141

36.22
128

45.09
97

46.59
108

49.36
136

51.73
115

46.84
121

3.39"
11"

FedProx Acc
CoR

50.31
136

33.64
131

41.77
115

45.04
130

47.44
137

49.12
116

44.55
128

5.68"
1"

Fixed Acc
CoR

52.07
141

29.58
0

32.24
0

38.91
0

40.09
0

46.30
0

39.87
/

10.36"
/

DANN+FL Acc
CoR

55.66
142

36.44
126

42.02
109

38.84
112

45.89
137

50.01
121

44.81
125

5.42"
15"

Shared Acc
CoR

52.07
141

35.22
113

37.83
98

35.19
125

40.52
120

41.76
96

40.43
116

9.80"
6"

FCIL Acc
CoR

52.07
141

36.22
128

45.09
97

46.59
108

49.36
136

51.73
115

46.84
121

3.39"
11"

FedCIL Acc
CoR

54.52
148

38.98
136

40.45
128

41.77
112

45.09
142

47.28
125

44.68
132

5.55"
22"

Re-Fed Acc
CoR

52.07
141

42.26
103

48.11
97

48.98
109

53.34
118

56.66
91

50.23
110 /

Table 10. Performance comparisons of three weighting methods for gradient norms in two incremental scenarios.

Dataset
Class-Incremental Scenario Domain-Incremental Scenario

CIFAR10 CIFAR100 Tiny-ImageNet Digit10 Office31 DomainNet
Early-Emphasis 29.22 25.61 32.07 85.96 50.80 56.66

Average-Weighting 28.73 24.88 30.42 85.71 48.95 56.04
Late-Emphasis 26.57 22.18 28.08 84.36 47.29 53.90



F. Analysis of the Federated Incremental-Learning Framework: Re-Fed
In this section, we prove the convergence of personalized informative models. To simplify the notation, here we conduct
an analysis on a fixed task while the convergence does not depend on the IL setting. We first define following standard
assumptions.
Assumption 1 (L2 Distance.) The L2 distance between the optimal local models ŵk:= argmin

wk

{f(wk)} and the optimal

global model ŵ:= argmin
w

{ 1
K

PK
k=1 rf(wk)} is bounded by:

||ŵk � ŵ||  M, 8k 2 [K]. (7)

Assumption 2 (Gradient Variance.) The variance of stochastic gradients is finite and bounded at all clients by:

E
h
||rf(ŵk)||2

i
 �2, 8k 2 [K]. (8)

Assumption 3 (Strong Convexity.) There exists µk 2 R+ and a unique solution ŵk:

f(wk)� f(ŵk) � hrf(ŵk), ŵk � wki+
µk

2
||wk � ŵk||2. (9)

F.1. Proof of Theorem 3.1
Definition 1 (Personalized Informative Model Formulation.) Denote the objective of personalized informative model vk on
client k while f(·) is strongly convex as:

v̂k(�) := argmin
vk

n
f(vk) +

q(�)

2
||vk � ŵ||2

o

q(�) :=
1� �

2�
, � 2 (0, 1)

(10)

where ŵ denotes the global model.

Lemma 1 (Proportion of Global and Local Information.) For all � 2 (0, 1) and � ! f(�k) is non-increasing:

@f(v̂k(�))

@�
 0

@||v̂k(�)� ŵ||2

@�
� 0.

(11)

Then, for k 2 [K], we can get:

lim
�!0

v̂k(�) := ŵ. (12)

Proof. The proof here directly follows the proof in Theorem 3.1 [10]. As � declines and q(�) grows, the objective of Eq. 10
tends to optimize ||vk � ŵ||2 and increase the local empirical training loss f(vk), leading to the convergence on the global
model. Hence we can modify the � value to adjust the optimization direction of our model vk thus the dominance of local
and global model information.
Theorem 3.1 (Personalized Informative Model.) Assuming the global model wt converges to the optimal model ŵ with g(t)

for any client k 2 [K] at each communication round t: E
h
||wt � ŵ||2

i
 g(t) and limt!1 g(t) = 0, then there exists a

constant C < 1 such that the personalized informative model vtk can converge to the optimal model v̂k with Cg(t).
Proof. Here we first introduce the Lemma 2 here proved by [21] Lemma 13.
Lemma 2 ([21] Lemma 13.) Under assumptions above, f(vk) is µk-strongly convex at each communication round t, we
have:

E
h
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(13)



Assume g(t + 1)  g(t) and let positive number A be chosen such that A(g(t)� g(t+ 1))  g2(t), and we arrive at
(1 � g(t)

A )g(t)  g(t + 1). Then, we prove the Theorem 3.2 by induction. Assuming that E
h
||vtk � v̂k||2

i
 Cg(t) where

C > 0 and C �
E
h
||v0

k�v̂k||2
i

g(0) , the learning rate ⌘ = 2g(t)
A(µk+q(�)) , here we can continue with Lemma 2:
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✓
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Therefore, if we let C = max{
E
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The first inequality uses the fact that 16  C and consequently 4
p
C  C. The second inequality results from the definition

of C as
4
⇣
(�+q(�)(M+ �

µk
))2+q(�)2g(t)+2q(�)

p
g(t)(�+q(�)(M+ �
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))
⌘

A(µk+q(�))2 }  C(1� 1
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q(�) )

). Hence, combining the results of 14

and 15 yields
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A
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Cg(t)2

A

= (1� g(t)

A
)Cg(t)
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(16)

and we have the desired result.


