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Supplementary Material

In this supplementary material, we first provide addi-
tional analysis of the proposed data creation pipeline (Sec.
A). Afterward, we present more examples of the BFM-UV
dataset (Sec. B). Then, we describe more implementation
details of UV-IDM (Sec. C). Next, we show more visual
results of extracting face UV textures from in-the-wild im-
ages using UV-IDM and rendering them, comparing with
other state-of-the-art methods such as Deep3D [2], HRN
[6], FFHQ-UV [1], OSTeC [4], NextFace [3] and AvatarMe
[5]; and supplement with quantitative comparison results
with HRM and Deep3D under less occluded frontal views
(Sec. D). Finally, we discuss the social impact (Sec. E).

A. Additional Analysis of the Data Creation
Pipeline

In Section 3.1 of the manuscript, we outline the creation
process of the BFM-UV dataset (i.e., StyleGAN-Based
Face Image Editing and Face UV-Texture Extraction). In
this section, we further provide details on face UV-texture
extraction for the dataset.

Deep3D, officially open-sourced by Microsoft, is built
on BFM [7] and selects 35,709 vertices for optimization.
However, these vertices cannot cover the entire UV texture
map in the UV space. To ensure that the neural network
can learn more easily, we use the original 53,215 vertices to
guarantee the completeness of the UV texture map we cre-
ate, which can fill the entire UV space. As shown in Fig. 2
of the manuscript, we use Deep3D to extract the predicted
texture from the front-facing bald face and then feed it into
the Linear Blending Module to obtain the final blended tex-
ture. Similar to the average texture used in FFHQ-UV for
color adjustment and filling in the missing regions of the
three-view texture, we present the visual comparison results
of feeding the BFM-based average texture into the Linear
Blending Module. As shown in Fig. A, using the textures
predicted by Deep3D as a filling template, we can signif-
icantly alleviate the color discontinuity issue at the seam
caused by different mask boundaries during the multi-view
incomplete UV fusion process. Compared to using average
texture filling, the predicted UV textures with our method
demonstrate more realistic effects in hair and beard regions.

B. More Examples of BFM-UV Dataset

In Section 3.1.2 of the manuscript, we show some exam-
ples of the created BFM-UYV dataset. In this supplementary
material, we further provide more visual results in Fig. B.

C. More Implementation Details

In this section, we further describe the training and in-
ference details of UV-IDM. During training, inspired by
[8], UV-IDM’s training consists of two phases: training
a VAE to compress the UV pixel space into a semanti-
cally richer, low-dimensional latent space, then freezing
the VAE’s encoder and jointly training ICM and LDM in
this space. Within ICM, only the embedding network Ty
is trainable, encoding incomplete UV textures into con-
ditional embeddings to guide LDM’s denoising. Incom-
plete textures are extracted using pre-trained Deep3D and
BiSeNet, along with predefined UV mapping, see Sec-
tion 3.1.2 of the manuscript. Additionally, 7y is custom-
designed, lightweight, and initialized with random weights.
The inference process requires ICM, LDM, and VAE’s de-
coder. ICM extracts and encodes an incomplete texture
from a raw image I into conditional embedding. Together
with the denoising time condition ¢, they guide LDM from
noise to generate latent variables consistent with I, which
VAE’s decoder uses to generate the full texture.

D. More Results of UV Textures Generation

In this section, we first present the visual results of our
method in terms of multi-view consistency. Specifically,
we select multiple images of the same face from different
viewpoints, use one viewpoint for texture prediction, and
then render the predicted results to compare with the origi-
nal images from other viewpoints, as shown in Fig. C. Sub-
sequently, we present more visual comparisons of face UV
textures generated by different methods, including our UV-
IDM combined with Deep3D and HRN (resulting in D-UV-
IDM and H-UV-IDM), as well as Deep3D, HRN, FFHQ-
UV, OSTeC, NextFace, and AvatarMe. Among them,
AvatarMe provides visual effects in both texture space and
3D space.

As shown in Fig. D, we display the rendering results
and UV texture maps for various methods. It can be ob-
served that compared to Deep3D and FFHQ-UV, D-UV-
IDM is able to accentuate more realistic textures, such as
the man’s beard in the third group and the woman’s cheeks
in the fourth group. Notably, FFHQ-UV tends to yield
smoother outcomes, aligning with the findings depicted in
the manuscript. In contrast to HRN (the number of opti-
mization iterations is set to 0), H-UV-IDM demonstrates
strong robustness to occlusions while preserving authentic
textures, exemplified by the women’s hair in the first and



fourth groups, the man’s glasses in the third group, and the
woman’s head adornments in the fifth group. Moreover,
compared to AvatarMe, we can achieve noticeably more re-
alistic rendering results that are closer to the actual image,
as shown in Fig. E.

We present additional texture generation results of UV-
IDM, HRN (the number of optimization iterations is set to
50), OSTeC, and NextFace under more challenging circum-
stances in Fig. F. HRN and NextFace produce textures that
suffer from substantial artifacts, which can be attributed to
the interplay between shape and texture optimization during
the iterative fitting process, as indicated by the microphone
in the third row, the backgrounds in both the fourth and sev-
enth rows and the sunglasses in the fifth row. UV-IDM, on
the other hand, adapts well to these scenarios. Compared to
OSTeC, the textures generated by UV-IDM are replete with
finer details, even from occluded angles. Take, for instance,
the woman in the eighth row: OSTeC renders disparate de-
tails on the left and right sides of her face, whereas UV-IDM
ensures that the generated textures under large pose varia-
tions remain reasonable. These indicate that our method
can generate more symmetrical, detailed, and robust tex-
tures against occlusions.

We test 650 and 750 less occluded frontal images from
FFHQ and CelebAMask-HQ to further demonstrate our
ability to generate high-fidelity textures. The results are
shown in Table A. Compared to HRN and Deep3D, UV-
IDM achieves advantages when provided with less occluded
frontal images.

E. Social Impact

This work primarily focuses on enhancing the texture fi-
delity of 3D face reconstruction, which can contribute pos-
itively to various applications such as virtual reality, gam-
ing, and digital content creation. By improving the quality
of 3D assets, it can lead to more immersive and realistic ex-
periences in virtual environments. However, it is essential
to consider the potential negative social impacts that may
arise from the misuse of such generative techniques. For in-
stance, the improved 3D face reconstruction methods could
be exploited to create fake videos or images, which can be
used for spreading misinformation, identity theft, or other
malicious purposes. Additionally, concerns about privacy
and consent may arise when using individuals’ facial data
without their permission. Therefore, while advancing tech-
nological developments, it is essential to carefully consider
how to regulate and manage the use of these techniques to
prevent potential misuse and their adverse impacts.
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Table A. Quantitative comparison of rendering quality of less occluded frontal facial views.

Method FFHQ CelebAMask-HQ

LPIPS| FIDJ| CSIM?T LPIPS| FIDJ| CSIM?T
HRN 0.1360 70.88 0.9689 0.1312 62.02 0.9713
H-UV-IDM 0.1131 54.00 0.9717 0.1159 53.89 0.9677
Deep3D 0.1306 58.24 0.9578 0.1338 59.89 0.9552
D-UV-IDM 0.1085 52.47 0.9710 0.1138 52.61 0.9674
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Figure A. Visualization results of blended textures generated by feeding the BFM average texture and the Deep3D predicted texture into
the Linear Blending Module, respectively.



Figure B. Triplets in the BFM-UV dataset. The first three columns show in-the-wild images from three different viewpoints. The middle
three columns show the corresponding hair-removed bald portraits from the same three viewpoints, and the last column displays the UV
texture maps that we extract.
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Figure C. The textures (Left-UV, Front-UV, and Right-UV) are generated using the multi-view images (Left, Front, Right) separately.
Then, each texture is rendered back to the three views. “Left Render Front” refers to the result of rendering the texture generated from the

left view image to the front view image. Other similar terms are explained similarly. Our method can generate a unified texture map for
multiple views.
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Figure D. Additional visualization results. Every two rows form a group, with the first row showing the rendering results of different
methods onto the original image and the second row displaying the corresponding UV texture maps for each method.
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Figure E. Visual comparison of texture generation and 3D reconstruction between UV-IDM/D-UV-IDM and AvatarMe.



Original UV-IDM HRN OSTeC NextFace

Figure F. Visual comparison of textures generated by UV-IDM, HRN, OSTeC, and NextFace.
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