UniHuman: A Unified Model For Editing Human Images in the Wild

Supplementary Material

In the following, we first discuss related literature in
Sec. 1. Then we analyze our text manipulation results in
Sec. 2 and show more ablation experiments in Sec. 3. Sub-
sequently, we explain how to incorporate LH-400K dataset
into training in Sec. 4 and show that our unified model can
achieve multi-task combinations in Sec. 5. Finally, we ex-
plain our implementation details in Sec. 6 and present vari-
ous visualized examples in Sec. 8.

1. Task-Specific Models Discussion

In the following, we discuss existing task-specific models
that achieve reposing, virtual try-on, and text manipula-
tion in the 2D image domain and how they differ from our
proposed approach. Since our goal is human image edit-
ing, we do not compare with 3D and video based models
[8, 22, 30, 33, 38] as they are out-of-scope of this paper.
Reposing. To change a person’s pose, previous approaches
typically encode the person as a whole and learn the trans-
formation across poses [2, 4, 18, 28, 32, 42]. Adapting
these models to handle multi-task scenarios where only spe-
cific body parts need to be modified can be difficult. Other
methods enhance the versatility of reposing models by dis-
secting the person into different parts [4, 7, 20, 23, 34], thus
allowing independent editing of each part. However, re-
lying solely on part-wise texture information may lead to
challenges in recognizing the identities of individual body
parts. For example, a strapless top might be misidentified
as a mini skirt since both clothing could have similar tex-
tures and shapes. To address this concern, a word embed-
ding labeling the clothing type, such as upper clothing and
lower clothing, is concatenated with the DINOv?2 features.
Furthermore, we apply a loss Lp in ?? to localize the cross-
attention map of each human part to its corresponding re-
gion. We find these strategies effectively improve the per-
formance of our model.

For reposing methods that introduce a pose-warping
module [1, 13], a UV coordinate inpainting model was
trained to infer invisible pixels from their visible counter-
parts, which is unsuitable for warping in-shop garments that
lack such UV representation. As a unified model, Uni-
Human can utilize both dense pose UV representation and
sparse keypoint locations to warp clothing texture to the
RGB space, ensuring the provision of accurate visible pixel
information across domains.

Virtual Try-on. The objective of virtual try-on is to seam-
lessly fit the target in-shop clothing to a person [5, 19, 26,
36, 43]. In prior work, this is often accomplished through
a two-stage process where the clothing is initially warped

through a deep learning model and subsequently aligned
with the person in a second model [5, 8, 19, 21, 37, 40].
The clothes warping module often learns the parameters of
a Thin-Plate Spline transformation (TPS) [9] from the target
garment to the target pose [40]. To balance the flexibility of
TPS with the rigidity of affine transformation, researchers
have introduced various regularization terms to train these
parameters [11, 40, 41]. However, these learned warping
modules are trained using try-on data to establish corre-
spondences between the clothing and the pose, posing a risk
of overfitting to specific body shapes within the dataset. In
contrast, our pose-warping module harnesses the pose cor-
respondences to map the original pixels to pose-warped tex-
ture without training. Moreover, while TPS is not suitable
for the pose transfer task due to the non-smoothness of the
pose transformation, our pose-warping model can leverage
dense pose for texture warping.

Diffusion Based Text Manipulation. The advent of dif-
fusion models has ushered in a new era in image editing
through text descriptions [3, 12, 15, 27, 39]. Among these
methods, latent Stable Diffusion (SD) [29] has gained pop-
ularity because of its versatility in accommodating prompts
of various formats, coupled with its efficient memory uti-
lization within the latent space. However, the challenge
of editing human images using text prompts persists, pri-
marily due to the highly structured nature of the human
body [4, 10, 17]. Additionally, enhancing the alignment be-
tween text and images requires the image captions to in-
clude information about clothing categories, shapes, and
textures. In our pursuit of expanding existing human image-
text datasets [17], we curated a new dataset featuring sin-
gle human images paired with captions from LAION-400M
[31]. We believe that incorporating these image-text pairs
in the human image editing tasks can further improve the
data diversity and enrich the modality of our model.

2. Text Manipulation Analysis

Results. We randomly chose 1000 images from the test sets
for text manipulation evaluation. Tab. | reports the FID,
KID, and CLIP image-text similarity scores for all the com-
parison methods. UPGPT [4] is a multi-task model. Ed-
itAnything [10] is an SD-based text manipulation model.
Our UniHuman shows better performance on all these met-
rics, demonstrating its capacity for human-specific text ma-
nipulation. For further evaluation, we also conducted a user
study. We asked AMTurk workers to compare 200 sam-
ples edited by our model and by an existing method on
WVTON. The workers evaluate the image quality on three
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Figure 1. Text manipulation examples. Full Edit indicates a new garment is synthesized from scratch. Partial Edit means partial textures
from the source garment are used to generate the new clothing. Zoom in to see details.

FIDJ KID] CLIPt Methods EditAnything [10] UniHuman UPGPT [4] UniHuman
UPGPT [4] 138.178 8.548 13.628 Pose Accuracy 32.6% 67.4% 13.2% 86.8%
EditAnything [10]  63.336  1.986 15.235 Image Plausibility 35.8% 64.2% 15.9% 84.1%
UniHuman 62.663 1.782 15.715 Image-Text Similarity 39.5% 60.5% 17.8% 82.2%

Table 1. Quantitative results for text manipu-
lation. Our UniHuman shows outperforms the
baselines in all metrics.

aspects: pose accuracy, image plausibility, and image-text
similarity. Tab. 2 reports the human evaluation results. Our
UniHuman outperforms prior work on all three aspects in
maintaining the original pose and manipulating the texture,
acknowledged by at least 60% workers.

Visulizations. Fig. | presents different ways of editing hu-
man images by text descriptions: the left side of the vertical

Table 2. Human evaluation results on WVTON for text manipulation. Our UniHu-
man is preferred by users on all three evaluation methods.

ruler includes examples of generating a new garment from
scratch, denoted by Full Edit; the right side of the vertical
ruler shows visualizations of editing the garment given ran-
dom partial source textures, denoted by Partial Edit. We
did not compare with UPGPT [4] in Partial Edit since it can
not achieve partial editing by design. Compared with Ed-
itAnything [10], our UniHuman shows better capability at
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FID| SSIM{ LPIPS| FID| KID| FID| KID| FID| M-SSIMt M-LPIPS| FID| KIDJ

pix seg 5785 0.808 0.126 9.638 0.269 6345 0218 30421 0.808 0.160  134.575 1.964
(@ Wo-emd 5456 0811 0125 9562 0252 6433 0209 28435 0808 0.161  132.802 1.740
w.o. Lz 5.827 0.813 0.126 10.086 0310 6.605 0239 29.175 0.805 0.162  134.021 1.856
w.o. pretrain 5.328 0.811 0.128 9.749 0270 6.664 0252 31.287 0.805 0.166  135.287 1.998
UniHuman 5.089 0.815 0.123 9.558 0.248 6.310 0.208 27.571 0.810 0.159  131.500 1.730
tp only 5.682 0.813 0.124 17.345 1.005 14.909 0.867 42.587 0.790 0.185  170.322 3.180
(@ Veonly 18.081 0.755 0210 9.721 0255 7.012 0280 76.605 0.784 0.208  143.137 2.378
tm only 9773 0751 0204 20.623 1429 18365 1.152 62219 0.789 0.196  175.602 5.387
multi-task ~ 5.269 0.826 0.110 9.659 0.184 6.960 0271 37.826 0.804 0.167 142.839 2.139

Table 3. Ablation results on 256x256 images. KID is multiplied by 100. Our full model achieves the best overall performance.

making the edited image more plausible. For example, on
the first row of Full Edit, our generated image better fits the
jacket into the person playing golf.

3. Additional Ablations

Part Encoder. Our part encoder includes two modules: a
DINOvV2 image encoder for visual representation encoding
and a CLIP Text encoder for semantic representation en-
coding. As mentioned in Sec. 1, the CLIP text embedding
labeling each body part helps identify these human parts. In
Tab. 3(c), w.0. emd removes the text embedding, causing a
slight drop in all evaluation metrics. In another setting, to
prove the effectiveness of the introduced L, we removed
this loss function in w.0. L. Results show that the perfor-
mance on both in-domain and out-of-domain test sets suf-
fers from a larger drop than w.o. emd, indicating the impor-
tance of L p in our objective function. Additionally, pix seg
extracts the part features at a pixel level to compare with
our feature-level body part segmentation. The slight drop
in all metrics shows that the contextual information from
the feature-level segmentation helps reconstruct the cloth-
ing textures for all three tasks.

SD Pretraining. We chose SD as our backbone for its ex-
cellence in producing text-aligned images and its suitability
for multi-task learning. In Tab. 3(c), w.0. pretrain model
takes 67% more time to converge (5 days vs. 3 days) and
shows a slight performance drop in the metrics.

Single-Task Ablations. To investigate if our multi-task ob-
jectives reinforce single tasks for each other, we designed
four ablation models: rp only that takes human images
from DeepFashion [17] to do the reposing task, vt only
that uses human and garment images from try-on datasets
[5, 24, 25] to do the try-on task, tm only that draws image-
text pairs from DeepFashion to do the text manipulation
task, and multi-task that takes all the above data to achieve
three task objectives in the same model. In Tab. 3(d),
DeepFashion and WPose are test sets for the reposing task;

VITON-HD, DressCode and WVTON are evaluation sets
for the try-on task. Multi-task effectively learns all three
tasks and outperforms single-task models on all metrics.
This demonstrates that our multi-task objectives indeed re-
inforce the two visual tasks (i.e., reposing and virtual try-
on) by learning them jointly. Note that multi-task is re-
named as w.0. 400K in ?? of the main paper.

4. Leveraging Unpaired Images In Training

The visual tasks in our model require paired images for
training. In reposing, we need image pairs of the same per-
son in different poses. Recent research explores the pos-
sibility of using readily accessible unpaired human images
for the reposing training [20, 23, 34], which prompts us to
explore the acquisition and incorporation of less costly un-
paired images. Refer to ?? for details on collecting these
data. However, the incorporation of unpaired images intro-
duces a significant challenge. It often leads to the potential
issue of pose leakage and pose-texture entanglement [20],
particularly when the volume of unpaired images surpasses
that of the paired ones. To mitigate this issue, we imple-
ment strong data augmentation techniques when obtaining
the part features in ??. Beyond routine operations like im-
age cropping, resizing and flip, we meticulously ensure that
each human part is randomly warped into different orienta-
tions. This strategy compels the model to heavily rely on
the target pose to accurately restore the original body orien-
tation, successfully addressing pose leakage and promoting
a more robust and effective training process.

5. Multi-Task Combinations in UniHuman

The three tasks in this paper can be combined in arbitrary
ways to edit the original human image within 50 denois-
ing time steps. Another less efficient way of accomplishing
this goal is to apply these tasks sequentially using the cor-
responding task-specific models. Fig. 2 shows the results
of using these two types of task combinations. Sequen-
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Figure 2. Examples of task combinations. In sequential generation, the input image sequentially goes through the virtual try-on method
(LaDI-VTON)), the reposing model (DisCo), and the text manipulation approach (EditAnything). In combo generation, our UniHuman can
achieve all editing tasks altogether.

tial Generation means applying virtual try-on, reposing, and
text manipulation using Ladi-VTON, DisCo and EditAny-
thing, sequentially on the input image. Combo Generation
represents achieving all tasks simultaneously in our UniHu-
man. We find that human images produced by our model
better follow the target pose and the given garment textures.

6. Implementation Details

In training, we use pretrained weights from SD v-1.5. IN
the part encoder, we use ViT-B/14 for the DINOv2 vi-
sual encoding and ViT-B/16 for the CLIP text encoding.
Then we fix the SD UNet encoder, the CLIP encoder, and
the first 15 blocks of DINOv2, finetuning the rest layers
of DINOv2 and SD UNet decoder with a learning rate
of 2.5 x 107°. The conditioning encoder is trained from
scratch with a learning rate of 10~%, which consists of three
residual blocks. In our objective function, we set empiri-
cally \; = 1073 and Ay = 2.5 x 10~%. Both the 256-
resolution model and 512-resolution model are trained for
220K iterations with a batch size of 64. In the dataloader,
the target pose, pose-warped texture, part features, and the
text prompt have a 10% chance of being zero, respectively.
This enables us to use classifier-free guidance [16] when

denoising the latent code, improving image quality.

In our part-SD cross-attention, we sequentially apply a
global cross-attention using the global feature representa-
tion of each human part and a local cross-attention using
the patch tokens of each human part. We found this sequen-
tial attention to be slightly better than concatenating global
features and patch tokens together in one attention block.
In the pose-warping module, we run DensePose [14] pre-
trained on COCO to get the dense pose UV representation
and use MMPose [6] pretrained on HKD [35] to obtain the
sparse pose keypoint representation.

For inference, we keep the aspect ratio of the original
images and resize the longer side to 256/512, then we pad
the shorter side to the same size with white pixels. This type
of resizing holds the original body shape to be unchanged
and keeps as much background as possible. All baseline
methods in our experiments use the above resizing for a fair
comparison. We set ¢ = 2 to be the guidance scale in the
classifier-free guided generation.

In all the tasks, we paste back the background areas that
do not change after editing and reconstruct the rest as in
the inpainting pipeline. In the reposing task, a large posi-
tion and pose change could happen, resulting in little back-
ground area in the conditioning. On the contrary, in try-



Figure 3. Examples of failed reposing generations. In cases where the source/target densepose predictions are incorrect, our model failed

to transfer accurate clothing textures.

on and text manipulation, most background areas do not
change and thus require less inpainting.

7. Limitation

Our approach is limited by its reliance on pose detectors and
parsing models, which is also a common limitation shared
by prior work [2, 4, 32, 37]. This is an even more challeng-
ing problem in our WPose dataset, which includes diverse
postures with more complicated body part occlusions than
standing postures. As a result, the detected densepose could
have incorrect predictions and missing parts. In Fig. 3, our
model failed to transfer accurate clothing textures due to
densepose errors. For future work, we believe incorporat-

ing more 3D information, such as depth and surface normal,
will help rectify these inaccuracies.

8. Additional Visualized Examples

Fig. 4 and Fig. 6 show in-domain generated results on Deep-
Fashion, DressCode and VITON-HD. Fig. 5 and Fig. 8§ give
several representative examples from our collected WPose
and WVTON, respectively. Results show that images gen-
erated by our model are better aligned with the target pose
while preserving the face and clothing identities.
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Figure 4. Examples of reposing on DeepFashion. Our model better reconstructs the intricate texture patterns.
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Figure 5. Examples of reposing on WPose. Images generated by our model are better aligned with the target pose while preserving the
face and clothing identities.
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Figure 6. Examples of virtual try-on on DressCode. Our UniHuman can recover detailed texture patterns.
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Figure 7. Examples of virtual try-on on VITON-HD. Our model is better at handling occlusions between body parts.
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Figure 8. Examples of virtual try-on on WVTON. Our model better fits the new garment onto the person.
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