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In this supplementary file, we provide the following ma-
terials:

A. Datasets and Evaluation Metrics
B. Training and Inference Details
C. More Ablation Studies
D. More Visualization Results

A. Datasets and Evaluation Metrics
Video segmentation (VS) tasks can be divided into two
groups: category-specified and prompt-specified VS tasks.
Table 1 summarizes the statistics of different VS datasets.

A.1. Category-specified VS Datasets

Category-specified VS tasks include video instance seg-
mentation (VIS) [17, 23], video semantic segmentation
(VSS) [13] and video panoptic segmentation (VPS) [7, 12],
where the object categories need to be specified.

Video Instance Segmentation (VIS) involves identify-
ing and segmenting individual objects within each frame
of a video while maintaining temporal consistency across
frames. There are two large-scale VIS datasets: YouTube-
VIS [23] series and OVIS [17]. YouTube-VIS [23] has
three versions: YT19/21/22. The commonly used version
is YT21, which contains 2,985 training, 421 validation, and
453 test videos over 40 ‘thing’ categories. The number of
frames per video is between 19 and 36. OVIS [17] targets
at distinguishing occluded objects in long-time videos (up
to 292 frames), which includes 607 training, 140 validation,
and 154 test videos, scoping 25 ‘thing’ categories. VIS task
adopts average precision (AP∗), average recall (AR∗) and
the mean value of AP (mAP) as metrics for evaluation.

Video Semantic Segmentation (VSS) needs to perform
pixel-level labeling of semantic categories in each frame of
a video. VSPW [13] is the first large-scale video scene
parsing dataset, containing 3,536 annotated videos and 124
semantic thing/stuff classes. VSS uses mIoU, mVC8 and
mVC16 as metrics for evaluation, where mean video con-
sistency (mVC∗) evaluates the category consistency among
long-range adjacent frames (‘*’ indicates the number of

*Equal contribution, † Corresponding author.

frames in a video clip).
Video Panoptic Segmentation (VPS) combines VIS

and VSS tasks by simultaneously identifying and tracking
individual object instances while assigning semantic labels
to each pixel. The goal is to achieve a comprehensive un-
derstanding of both instance-level and semantic-level infor-
mation across the video sequence. VIPSeg [12] is the first
large-scale VPS dataset in the wild, which shares the origi-
nal videos from the VSPW dataset. VIPSeg has pixel-level
panoptic annotations, covering a wide range of real-world
scenarios and categories. There are two commonly used
evaluation metrics for the VPS task: VPQ [7] and STQ
[19]. Video Panoptic Quality (VPQ) computes the aver-
age mask quality by performing tube IoU matching across
a small span of frames. Segmentation and Tracking Quality
(STQ) is proposed to measure the segmentation quality and
long term tracking quality simultaneously.

A.2. Prompt-specified VS Datasets

Prompt-specified VS focuses on identifying and segmenting
specific targets throughout the video, where visual prompts
or textual descriptions of the targets need to be provided.
It includes video object segmentation (VOS) [15], panoptic
VOS (PVOS) [21] and referring VOS (RefVOS) [18].

Video Object Segmentation (VOS) segments a particu-
lar object throughout the entire video given only the object
mask at the first frame, which can be viewed as the exten-
sion of interactive segmentation from spatial to temporal
dimension. DAVIS [16], an early proposed VOS dataset,
contains a total of 90 videos. YouTube-VOS (YT18) [20]
consists of 4,453 short video clips with 94 different object
categories. MOSE [4] targets at complex video object seg-
mentation, whose videos partially inherit from OVIS [17].
MOSE contains 2,149 video clips and 36 object categories.
To evaluate the performance, region jaccard J and countour
accuracy F are computed for ‘seen’ and ‘unseen’ classes
separately, denoted by subscripts s and u. Gth is the aver-
age (J&F ) over both seen and unseen classes.

Panoptic VOS (PVOS) extends the above VOS task by
taking stuff classes into account. Based on the VIPSeg
dataset, VIPOSeg [21] is developed for PVOS. It contains
exhaustive object annotations and covers various real-world
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Tasks VIS VSS VPS PVOS VOS RefVOS
Datsets YT19 YT21 OVIS VSPW VIPSeg VIPOSeg DAVIS YT18 MOSE BURST RefDAVIS RefYT
Videos 2.8k 3.8k 1.0k 3.5k 3.5k 3.5k 0.09k 4.4k 2.1k 1.9k 0.09k 4.0k
Images 97k 92k 51k 252k 85k 85k 6k 97k 96k 196k 6k 97k
Masks 131k 232k 296k - 926k 926k 13k 197k 431k 600k 13k 197k
Classes 40 40 25 124 124 124 - 94 36 482 - -

Expressions - - - - - - - - - - 1.5k 28k
Thing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Stuff ✓ ✓ ✓

Exhaustive ✓ ✓ ✓

Table 1. Statistics of different video segmentation datasets. The datasets labeled with the same color share the source video data but have
different annotation formats, such as VSPW, VIPSeg and VIPOSeg.

Images VideosDatasets IS PS IS Ref VIS VIS VPS VOS VOS VOS Ref Settings

Training Frames SA1B COCO LVIS RefCOCO YT21 OVIS VIPSeg YT18 MOSE BURST RefYT GPUs Lr Max Iter Step
Stage 1 1 1.0 1.0 0.5 1.0 - - - - - - - 16 1e-4 354k 342k
Stage 2 3 0.25 0.5 0.25 0.35 0.25 0.35 0.5 0.25 0.25 0.25 0.35 8 5e-5 708k 684k
Stage 3 5-7 0.25 0.5 0.25 0.35 0.25 0.35 0.5 0.25 0.25 0.25 0.35 8 5e-5 177k 162k

Table 2. Implementation details in training. The sampling weights of each dataset during different training stages are given. ‘-’ means that
the dataset is not used. ‘Step’ means the iterations when the learning rate is reduced.

object categories, which are carefully divided into subsets
of thing/stuff and seen/unseen classes for comprehensive
evaluation. This newly proposed benchmark uses eight sep-
arate metrics, including four mask IoUs for seen/unseen
thing/stuff and four boundary IoUs [1] for seen/unseen
thing/stuff, respectively. The overall performance Gth&sf

is the average of these eight metrics.
Referring VOS (RefVOS) aims to segment the target

object in a video based on the natural language description,
which is a challenging multi-modal segmentation task. Ref-
DAVIS and RefYT [18] are two RefVOS datasets based on
DAVIS and YouTube-VOS [20], respectively. RefYT is a
large-scale benchmark covering 3,978 videos with around
28K language descriptions. The evaluation metrics include
region similarity (J), contour accuracy (F ) and their aver-
age value (J&F ).

B. Training and Inference Details
B.1. Training Losses

There are three terms in the training loss:

L = λmaskLmask + λclsLcls + λreidLreid, (1)

where λmask, λcls and λreid are the hyper-parameters to bal-
ance the multiple loss terms. Their default values are set to
5, 3, 0.5, respectively. During training, mask annotations
of all VS tasks are fully utilized to train the learnable and
prompt queries.

Mask Loss contains two common functions: Dice loss
[3] and Binary Cross-Entropy (BCE) loss. It can be formu-
lated as follows:

Lmask =
∑T

t=1
Lmask(M

t, M̄ t) + Lmask(M
∗t, M̄ t),

where M t,M∗t are the matched masks for learnable
queries and prompt queries, respectively, and M̄ t denotes
the ground-truth mask. t and T are the frame index and the
number frames of the input video clip.

Classification Loss only applies to category-specified
VS tasks. We leverage the similarity between query embed-
dings and CLIP embeddings of category names for recogni-
tion. The classifier S can be obtained by:

S = 1/T × Cosine(fcls([q,q
∗]), Pcate),

where Pcate is the text embedding of category names pro-
duced by CLIP text encoder, fcls converts query embed-
dings from the visual space to the language space using an
MLP layer. T is a temperature to amplify the logit. We
employ focal loss [10] to supervise the classifier.

ReID Loss aims to maintain the temporal consistency in
VS tasks, which can be formulated as:

LReID = LReID(q,q) + LReID(q,q
∗) + LReID(q

∗,q∗),

where the second term aims to align prompt queries and
learnable queries within the same feature space. We utilize
the contrastive loss and the auxiliary loss proposed in [14]
for the ReID loss.

B.2. Training Stages

The whole training process consists of three consecutive
stages: image-level joint training, video-level joint train-
ing and long video finetuning. In the first stage, we
jointly pretrain UniVS on multiple image datasets, includ-
ing SA1B [8], COCO[11], LVIS [5], and the mixed dataset
of RefCOCO[6], RefCOCO+[6], RefCOCOg. Due to lim-
ited computational resources, we randomly select 250k im-
ages from the 1M images (2.5%) in the original SA1B
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Figure 1. Architecture comparison of mask decoder layers in unified segmentation models, including Mask2Former [2], UNINEXT[22],
SEEM[25] and our UniVS. These methods differ in image and prompt interaction. Note that feed-forward network (FFN) is omitted here.

dataset for training. It has been experimentally shown in [8,
9] that the performance of the model trained on 3% SA1B
images is slightly lower than the model trained on the entire
images. In the last two stages, UniVS is trained on image
and video datasets, including YT21, OVIS, VIPSeg, YT18,
MOSE, Burst and RefYT. Similar to UNINEXT [22], to
avoid the model forgetting previously learned knowledge
on image-level datasets, we generate pseudo video clips
from image datasets and merge them into jointly training
on video datasets.

In Table 2, we show the sampling weights of each dataset
in each training stage, as well as the number of GPU
(GPUs), learning rate (Lr), the maximum iterations (Max
Iter) and the time to reduce the learning rate (Step). For
UniVS with R50 backbone, the training time for stage 1/2/3
on 16/8/8 V100 GPUs is 9.7/7.5/3.6 days, respectively. And
UniVS with Swin-T/B/L backbones need similar training
times for stage 1/2/3 on 16/8/8 A100 GPUs.

C. More Ablation Studies

Except specifically stated, experimental results in this sec-
tion are evaluated using the ResNet50 backbone.

C.1. Comparison of Unified Architectures

To show the superiority of our proposed unified video seg-
mentation architecture, we compare UniVS with popular
unified segmentation frameworks, including Mask2Former
[2], UNINEXT [22], and SEEM [25]. The architecture
comparison is illustrated in Fig. 1.

The original Mask2Former [2] can process multiple
category-specified VS tasks, such as VIS/VSS/VPS, but
cannot handle prompt-specified segmentation tasks, such as
VOS/PVOS/RefVOS. UNINEXT [22] is an object-centric
segmentation model, which aligns text prompts with image
embeddings by introducing a vision-language early fusion
module in the pixel decoder (see Fig. 1b). UNINEXT is

built upon the DeformabelDETR [24] framework, which
is more suitable for instance-level detection and segmen-
tation, but exhibits relatively weaker performance in detect-
ing and segmenting stuff entities. SEEM [25] is designed
for image segmentation. It introduces an extra group of
learnable queries and extends the keys and values of self-
attention layers to integrate prompt information, as shown
in Fig 1c. However, when multiple prompt entities are pre-
sented, SEEM needs to utilize a post-processing matching
stage to locate the targets from all predicted masks.

It can be observed that previous unified architectures re-
quire back-end matching between prompt tokens and learn-
able queries to identify the targets, which is detrimental
to maintain entity consistency across frames. In contrast,
our UniVS transfers all VS tasks to the prompt-guided tar-
get segmentation to explicitly decode masks, and thus the
matching strategy is only used when detecting newly ap-
peared entities from learnable queries, as shown in Fig 1d.

For quantitative performance comparison, we exclude
UNINEXT[22] here, because it uses DefDETR [24] archi-
tecture instead of Mask2Former architecture, making it hard
to be compared directly. We train the Mask2Former, SEEM
and UniVS models using the same training settings and
datasets (the first two stages in Sec B.2.). The results are
shown in Table 3. While Mask2Former and SEEM may
perform well on some of the VS tasks, UnivS performs the
best on almost all VS tasks, demonstrating the superiority
of our proposed architecture.

C.2. Inference Process

Separated Self-attention Types. As shown in Table 4(a),
in the separated self-attention layer, we test three ways of
interaction between learnable and prompt queries. Specifi-
cally, ’SepSA’ refers to separate self-attention calculations
for learnable and prompt queries respectively. ’SepSA-
entity’ involves interaction among prompt queries belong-
ing to the same entity, with no visibility across different
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Video Tasks VIS VPS VOS RefVOS

Method
YT21 OVIS VIPSeg YT18 RefYT
mAP mAP VPQ STQ Gth J&F

Mask2Former[2] 45.9 17.2 40.1 37.9 - -
SEEM[25] 49.2 14.7 39.3 34.2 62.1 *

UniVS (Ours) 52.7 21.7 35.4 49.2 67.4 54.9

Table 3. Quantitative performance comparison among different
unified segmentation models. ‘-’ means that the model is inappli-
cable to this task and ‘*’ means that the result is not reported. For
the VIS task, the results are evaluated on the development set (1/10
of the training set, excluded during training).

(a) Separated self-attention types

Self-attn PVOS
Type Gth&sf Gth

seen Gth
unseen Gsf

seen Gsf
unseen

a1 61.8 59.7 57.1 68.2 62.1
a2 57.9 58.4 55.0 63.5 54.5
a3 48.5 41.0 46.5 51.0 55.5

(b) Quantitative performance comparison on PVOS task

Self-attn
Used queries

RefYTVOS
Type J&F J F

a1 Prompt 38.7 36.1 41.3
a2 Prompt 55.7 53.9 57.5
a2 Prompt + Learnable 55.1 53.5 56.8

(c) Quantitative performance comparison on RefVOS task

Table 4. Ablation study on RefVOS tasks, where ‘SepSA-e’ and
‘SepSA’ mean that the separate self-attention mask is executed for
each expression and all expressions, respectively.

entities. Lastly, ’SepSA-learnable’ builds upon ’SepSA-
entity’ by allowing each prompt query to see all learnable
queries to extract the overall image information.

To evaluate the impact of these three approaches on
visual prompt-guided video segmentation tasks, we con-
ducted an ablation study on the PVOS task, which in-
volves simultaneous thing and stuff object segmentation.
As shown in Table 4(b), the experimental results demon-
strate that ’SepSA’ performs the best, as it avoids content
overflow between prompt and learnable queries.

Efficient Inference on Prompt-guided Segmentation.
As shown in Table 4(c), UniVS can simultaneously pro-
cess multiple prompt-guided targets in the RefVOS task
by applying entity-wise separated self-attn mask (termed as
SepSA-entity). This inference process is more efficient than
the existing methods that often segment targets one by one.

Video Tasks VIS VPS

Interval frames YT21 OVIS VIPSeg
mAP mAP VPQ STQ

1 54.8 24.2 38.3 46.2
3 54.6 23.7 38.6 45.8
5 54.6 23.4 38.4 45.8
7 53.0 22.1 38.2 45.2
9 52.6 22.0 37.7 45.1

Table 5. Ablation study on the number of interval frames to detect
newly appeared objects. The input clips include 5 frames.

Task VIS VSS VPS VOS RefVOS PVOS
Dataset YT21 VSPW VIPSeg YT18 RefYT VIPOSeg
FPS 20.2 15.3 10.4 17.5 20.0 11.9

Table 6. Inference speed of UniVS with ResNet50 backbone on a
single V100 GPU.

Additionally, using only prompt queries can achieve higher
performance than using both prompt and learnable queries.

The Detection of Newly Appeared Objects. For
category-specified VS tasks, we investigate the impact of
using different interval frames on detecting newly appeared
objects. Since the VSS task only requires pixel-level cate-
gory prediction without the need of instance-level tracking,
it does not detect new objects. Therefore, we conduct ab-
lation on the VIS and VPS tasks. The results are shown
in Table 5. It can be observed that when the number of
interval frames is smaller than the number of frames (i.e.,
5) in the input video clip, the performance is basically un-
affected. However, if the interval frames exceed the num-
ber of frames in the input video clip, the performance is
decreased by 1∼2%. This decline can be attributed to the
missing of some newly appeared objects.

Inference speed. Table 6 shows the inference speed of
UniVS with 640p video as input. Videos in YT21, YT18
and RefYT contain 1 ∼ 3 objects, whereas videos in VSPW,
VIPSeg and VIPOSeg have more than 15 entities, whose
inference speed is slower.

C.3. Generalization Ability

To further verify the generalization capability of UniVS,
we try to train UniVS solely on the category-guided VS
datasets but test on the prompt-guided VS datasets. In
Table 7, we train UniVS only on category-specific VS
tasks, including COCO, LVIS, YT21, OVIS and VIPSeg
datasets. The testing is conducted on two prompt-guided
VS tasks: VOS and PVOS. Experimental results demon-
strate that UniVS exhibits comparable or even better per-
formance on VOS and PVOS tasks, indicating its remark-
able generalization ability. Additionally, we speculate that
the significant performance improvement on DAVIS is due
to its similarity to the training data distribution, while the
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slight performance drop on VIPOSeg is attributed to its in-
clusion of more diverse video scenes and objects, which ex-
ceeds the distribution of training data.

Training data
VOS PVOS

DAVIS VIPOSeg
Category Prompt Gth Gth

seen Gth
unsn Gsf

seen Gsf
unsn Gth& sf

✓ ✓ 70.8 63.4 61.9 73.9 68.4 66.8
✓ 75.0 59.2 54.2 67.9 78.1 64.9

Table 7. Generalization ability of UniVS trained on category-
guided VS tasks but tested on prompt-guided VS tasks. UniVS
adopts SwinB backbone and trained on stages 1&2.

D. Visualization
VIS/VSS/VPS/VOS. Figs. 2 and 3 display the segmenta-
tion results predicted by our UniVS on VIS/VSS/VPS/VOS
tasks. To enhance visualization, we use the same video for
different VS tasks. Specifically, the thing categories for the
VIS task is sourced from the OVIS dataset, while the thing
and stuff categories for the VSS and VPS tasks are derived
from the VIPSeg dataset. As for the VOS task, the visual
prompts are obtained from the MOSE dataset. It can be
observed that UniVS achieves satisfactory segmentation re-
sults across these tasks, demonstrating its excellent gener-
alization capability.

RefVOS. Fig. 4 exhibits the video segmentation re-
sults with text expressions as prompts. We observe that
UniVS can accurately segment objects in the video based
on the given text prompts. This demonstrates that UniVS
can effectively integrate language and video information,
enabling cross-modal consistent segmentation.

PVOS. Fig. 5 displays the segmentation results for the
PVOS task. The second and third rows compare the ground
truth masks with the UniVS predicted masks, confirming
the superiority of UniVS in visual prompt-guided thing and
stuff entity segmentation. Additionally, it is worth noting
that due to the high cost of video segmentation annotation,
this dataset adopts a semi-automatic annotation approach,
combining manual and algorithmic annotations. This may
result in potential omissions or inaccuracies in the provided
ground truth masks, such as the areas highlighted by the
white bounding boxes. Therefore, UniVS also holds poten-
tial as a complementary method for dataset annotation in
future endeavors.

In summary, UniVS demonstrates excellent general seg-
mentation capability and can handle various VS tasks. It is
not only suitable for category-guided segmentation but also
performs well in almost all visual prompt-guided thing and
stuff entity segmentation tasks. Meanwhile, UniVS show-
cases its ability in expression-guided cross-modal object
segmentation tasks. Its multi-modal fusion capability and
consistent segmentation performance make UniVS highly
promising for integrating language and video information.

Video Demo. We provide more visualizations of the
segmentation results on the project page. Please ac-
cess the related content by clicking on the link https:
//sites.google.com/view/unified-video-
seg-univs.
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Figure 2. Visualization examples of UniVS on VIS/VSS/VPS/VOS tasks. The original videos come from the validation set of OVIS
dataset, while the entity categories of VIS and VSS/VPS are from OVIS and VIPSeg datasets, respectively. The visual prompts are from
the MOSE dataset.
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Figure 3. Visualization examples of UniVS on VIS/VSS/VPS/VOS tasks. The original videos come from the validation set of OVIS
dataset, while the entity categories of VIS and VSS/VPS are from OVIS and VIPSeg datasets, respectively. The visual prompts are from
the MOSE dataset. For VOS task, we mark the incorrectly tracked objects in the last column with white bounding boxes.
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Figure 4. Visualization examples of UniVS with text prompts in the RefVOS task. The videos are from the RefYTVOS valid set, and the
left side provides the expression per object.
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Figure 5. Visualization examples of UniVS with visual prompts in the PVOS task. The video frames are from the VIPOSeg valid set,
with the second row showing the ground truth masks and the last row displaying the predicted masks by our UniVS. Note that the visual
prompts include both thing and stuff classes. 9
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