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In this supplementary document, we provide details about

the training and testing datasets used in the experiments.

Then, we show additional comparative results. Furthermore,

we include more information about implementation and ana-

lyze our method’s limitations.

1. Datasets

Training datasets. The training datasets comprise two

publicly available datasets and three custom-synthesized

datasets:

• CASIA v2 [3]: This dataset provides spliced and copy-

moved forgery images featuring various objects, which

is widely utilized for model training.

• Fantastic Reality [7]: It includes many spliced images

across diverse scenes, accompanied by ground truth

masks.

• Tampered COCO: The images in this dataset are con-

structed using the COCO 2017 datasets [9]. Inspired

by [8, 19], we employ the annotations in [9] to ran-

domly copy and paste one or more arbitrary objects

within the same image or to splice objects from one

image into another. Random rotations and resizing op-

erations are then applied to these images. To facilitate

the Unionformer to accurately model the continuity

between objects, 60% of the tampered images in this

dataset contain multiple manipulated objects.

• Tampered RAISE: This dataset is constructed based

on the RAISE dataset [2]. We eliminate one or several

objects from an authentic image and use a GAN-based

inpainting technique [18] to restore the contents. Sim-

ilarly to tampered COCO, 60% of the images have

multiple objects removed.

• Pristine images: These images are selected from the

COCO 2017 and RAISE datasets.

To simulate the visual quality and tampering artifacts present

in real-world scenarios, we randomly add Gaussian noise

and apply JPEG compression on the synthetic data.

The training process of our method executed in three

distinct stages. Initially, parts three, four, and five of the

training set are used to train our encoding module, BSFI-

Net. Drawing on the work of [12, 17], the Transformer and

Convolutional Blocks within BSFI-Net undergo pre-training

on the ImageNet-1K dataset. Subsequently, the synthesized

COCO datasets, including both tampered and authentic sam-

ples from COCO 2017 are utilized to train the Region Pro-

posal Network (RPN). Finally, the entire training datasets,

comprising five parts, is employed to train the complete

UnionFormer. We perform equal sampling from every part

in each training epoch to eliminate bias caused by the varying

scales of different parts in the training dataset.

Testing datasets. To comprehensively evaluate the per-

formance of our model, we employ five commonly tradi-

tional datasets: CASIA v1[3], Columbia[6], Coverage[15],

NIST16[4], and IMD20[11], as well as two challeng-

ing diffusion-based datasets: CoCoGlide and BDNIE.

CocoGlide, created by [5], consists of 512 images gen-

erated from the COCO 2017 validation set using the GLIDE

model. We constructed BDNIE dataset, comprising 512 hyer-

realistic fake images generated by the advanced bended Dif-

fusion model [1] for text-driven natural image editing. In

BDNIE, we adopt the same forgery regions and guided text

prompts as CocoGlide.

Figure 1 displays a comparison of examples from the

CoCoGlide and BDNIE datasets. Although both datasets

are based on diffusion models, BDNIE undergoes a global

diffusion process and spatially blends noised versions of

the input image with the local text-guided diffusion latent

at a progression of noise levels, seamlessly integrating the

edited region with the unchanged parts [1]. Consequently,

the images in BDNIE appear more realistic and exhibit fewer
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Figure 1. Some examples from the CocoGlide and BDNIE datasets

with the same original images, reference masks, and guided

prompts. The guided texts are annotated above the first line.

MVSS-Net CAT-Net v2 ObjectFormer TruFor Ours

F1 0.515 0.547 - 0.624 0.632

AUC - - 0.884 0.927 0.929

Params (M) 142.79 114.26 257.97 262.05 210.63

FLOPs (G) 327.14 314.30 402.80 519.91 392.82

Training Data (K) 96.60 875.50 - 900.25 832.50

Table 1. Comparison of computing costs and dataset sizes.

tampering artifacts, such as traces around editing boundaries

and inconsistencies between different regions.

2. Additional comparative results
Qualitative results. In Figure 2, we compare additional

tampering localization results from all seven testing datasets

with the state-of-the-art methods. These comparative ex-

amples illustrate that our localization results are more ac-

curate than other methods, with more precise edges and

fewer false alarms for the real regions. Moreover, our method

also achieves satisfactory performance on two challenging

datasets based on the Diffusion models, while most other

methods tend to fail.

Computing overhead and training data. Table 1 com-

pares the training set size and computational cost of different

methods. We include pixel-level F1 and AUC scores for

image manipulation localization tasks to understand model

efficacy better. To compare the computational cost between

models, we utilize Floating Point Operations (FLOPs) and

the number of model parameters as evaluation criteria. The

data are obtained based on models released by the authors.

Compared to those relying solely on convolutional neural

networks, transformer-based models attain higher accuracy

ManTra-Net SPAN MVSS-Net PSCC-Net CAT-Net v2 TruFor Ours

optimal 0.620 0.324 0.606 0.662 0.587 0.699 0.738
fixed (0.5) 0.481 0.272 0.447 0.503 0.415 0.508 0.531

Table 2. Results of pixel-level F1 with optimal and fixed threshold

on the BDNIE dataset.

but also demand more computational resources. As shown

in Table 1, our approach has less computing overhead than

other transformer-based methods. With comparable perfor-

mance, we utilized less training data.

Quantitative comparison on the BDNIE dataset. To fur-

ther analyze the detection capabilities of our method for

identifying diffusion-based tampering, we compare its perfor-

mance with other methods on the BDNIE dataset, as shown

in Table 2. This evaluation focuses on the pixel-level F1

scores at optimal and fixed thresholds. Our method attained

superior results by leveraging the continuity in modeling

relationships between objects within an image.

3. Implementation Details
We sequentially employ the cross-entropy loss, the loss

proposed by Faster R-CNN [13], and the unified loss Lunion

introduced in the main paper to train BSFI-Net, RPN, and

the complete UnionFormer. We trained the BSFI-Net for

100 epochs using the AdamW optimizer [10], with a batch

size of 512 and a weight decay of 0.05. The initial learning

rate is set to 0.001 and decayed following a cosine schedule.

The Intersection-over-Union (IoU) threshold for positive

examples (potentially manipulated regions) in the PRN is

set to 0.7, while for negative examples (authentic regions),

it is set to 0.3. To train the RPN, we employ SGD with a

momentum of 0.9 for optimization. The initial learning rate

is set to 0.001 for the first 60K iterations and then reduced to

0.0001 for the subsequent 40K iterations. In the training of

the complete UninonFormer, inspired by [14, 16], we adopt

a 36-epoch (3×) schedule, where we train the Unionformer

for 2.7× 105 iterations with a batch size of 16. An AdamW

optimizer is also used in this stage, with the learning rate

initially set to 10−4 and then multiplied by 0.1 at 1.8× 105

and 2.4× 105 iterations. Following [14], the learning rate

warm-up is applied in the first 1000 iterations, and the weight

decay is set to 0.0001.

4. Limitation
The limitations of our method primarily lie in three scenar-

ios: 1) extremely complex multi-object manipulation, which

fails to deconstruct complex object relationships; 2) minor-

scale tampering regions; and 3) irregular non-component

partial modifications. Note that our method can accurately

locate most regular partial modifications because the pro-



Figure 2. Some qualitative comparison results with the state-of-the-art methods. The forgery images, from top to bottom, are respectively

from CASIA v1, Columbia, Coverage, NIST16, IMD20, CocoGlide, and BDNIE.

Figure 3. Some failure cases of our method.

posals generated by RPN cover these components. Figure 3

illustrates some examples of localization failures.

References
[1] Omri Avrahami, Ohad Fried, and Dani Lischinski. Blended

latent diffusion. ACM Transactions on Graphics (TOG), 42

(4):1–11, 2023. 1

[2] Duc-Tien Dang-Nguyen, Cecilia Pasquini, Valentina Conotter,

and Giulia Boato. Raise: A raw images dataset for digital

image forensics. In Proceedings of the 6th ACM Multimedia

Systems Conference, page 219–224, New York, NY, USA,

2015. Association for Computing Machinery. 1

[3] Jing Dong, Wei Wang, and Tieniu Tan. Casia image tam-

pering detection evaluation database. In 2013 IEEE China
Summit and International Conference on Signal and Informa-
tion Processing, pages 422–426, 2013. 1

[4] Haiying Guan, Mark Kozak, Eric Robertson, Yooyoung Lee,

Amy N. Yates, Andrew Delgado, Daniel Zhou, Timothee

Kheyrkhah, Jeff Smith, and Jonathan Fiscus. Mfc datasets:

Large-scale benchmark datasets for media forensic challenge

evaluation. In 2019 IEEE Winter Applications of Computer
Vision Workshops (WACVW), pages 63–72, 2019. 1

[5] Fabrizio Guillaro, Davide Cozzolino, Avneesh Sud, Nicholas

Dufour, and Luisa Verdoliva. Trufor: Leveraging all-round

clues for trustworthy image forgery detection and localization.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 20606–20615, 2023. 1

[6] Yu-feng Hsu and Shih-fu Chang. Detecting image splicing

using geometry invariants and camera characteristics consis-

tency. In 2006 IEEE International Conference on Multimedia
and Expo, pages 549–552, 2006. 1

[7] Vladimir V. Kniaz, Vladimir Knyaz, and Fabio Remondino.

The point where reality meets fantasy: Mixed adversarial

generators for image splice detection. In Advances in Neu-
ral Information Processing Systems. Curran Associates, Inc.,

2019. 1

[8] Myung-Joon Kwon, In-Jae Yu, Seung-Hun Nam, and Heung-

Kyu Lee. Cat-net: Compression artifact tracing network for



detection and localization of image splicing. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pages 375–384, 2021. 1

[9] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence

Zitnick. Microsoft coco: Common objects in context. In

Computer Vision – ECCV 2014, pages 740–755, Cham, 2014.

Springer International Publishing. 1

[10] Ilya Loshchilov and Frank Hutter. Decoupled weight de-

cay regularization. In International Conference on Learning
Representations, 2018. 2

[11] Adam Novozamsky, Babak Mahdian, and Stanislav Saic.

Imd2020: A large-scale annotated dataset tailored for detect-

ing manipulated images. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision
(WACV) Workshops, 2020. 1

[12] Zhiliang Peng, Wei Huang, Shanzhi Gu, Lingxi Xie, Yaowei

Wang, Jianbin Jiao, and Qixiang Ye. Conformer: Local fea-

tures coupling global representations for visual recognition.

In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 367–376, 2021. 1

[13] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. Advances in Neural Information Process-
ing Systems, 28, 2015. 2

[14] Zhiqing Sun, Shengcao Cao, Yiming Yang, and Kris M Ki-

tani. Rethinking transformer-based set prediction for object

detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3611–3620, 2021. 2

[15] Bihan Wen, Ye Zhu, Ramanathan Subramanian, Tian-Tsong

Ng, Xuanjing Shen, and Stefan Winkler. Coverage — a novel

database for copy-move forgery detection. In 2016 IEEE
International Conference on Image Processing (ICIP), pages

161–165, 2016. 1

[16] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen

Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 2

[17] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,

Jose M. Alvarez, and Ping Luo. Segformer: Simple and

efficient design for semantic segmentation with transformers.

In Advances in Neural Information Processing Systems, pages

12077–12090. Curran Associates, Inc., 2021. 1

[18] Haitian Zheng, Zhe Lin, Jingwan Lu, Scott Cohen, Eli Shecht-

man, Connelly Barnes, Jianming Zhang, Ning Xu, Sohrab

Amirghodsi, and Jiebo Luo. Image inpainting with cascaded

modulation gan and object-aware training. In Computer Vi-
sion – ECCV 2022, pages 277–296, Cham, 2022. Springer

Nature Switzerland. 1

[19] Peng Zhou, Xintong Han, Vlad I. Morariu, and Larry S. Davis.

Learning rich features for image manipulation detection. In

Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. 1


