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Overview
In this supplementary material, we provide the following
items for a better understanding of our main paper.

1. Visual comparison of different projections.

2. Pseudo-Labels at different thresholds.

3. Results in semi-supervised settings.

4. Activation maps.

5. Implementation details.

1. Visual comparison of different projections
During the initial cold-start stage, our objective is to gener-
ate fake images in order to establish cross-view image pairs,
which are essential for learning cross-view consistency.
Why do we need a novel projection? As depicted in
Fig. 1, existing supervised methods [5, 7] typically project
satellite-view images to ground-view perspectives. How-
ever, the transformed images (e.g., (B-C) in Fig. 1) may
suffer from severe distortions due to the limited overlaps
between the two views and the presence of sky regions
in ground images. Therefore, supervised refinements by
ground-truth correspondences become necessary for them.
Although the advanced cross-view synthesis method [3]
project successfully satellite-view images to ground-view
(e.g.,(D) in Fig. 1), it needs fully supervised training and
does not work in crowed cities(i.e., VIGOR ).

Different from existing supervised settings, we propose a
correspondence-free projection, which projects ground im-
ages to satellite view without any ground-truth labels. The
transformed images, such as (F) in Fig. 1, resemble highly
satellite images.
Why doesn’t the projection work in the case of VIGOR?
The projection is very important to start robust cross-view
learning. Due to the complex scenes and severe occlusions
in the cities of VIGOR, it is hard to synthesize cross-view
images without extra 3D information, even in a fully super-
vised method [3].

Our projection is based on homography projection like
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Figure 1. Different Projection. (A) Satellite and (E) Ground im-
ages are ground truth. Others are (B) Polar Transform [5], (C)
Projective Transform [7], (D) Sat2Density [3], (F) Our CFT, and
(G) Spherical [6, 9] Transform. (B-D) needs ground-truth cor-
respondences between ground and satellite images. Our CFT is
correspondence-free and transformed images are the most similar
to ground truth.

other methods [4, 5], assuming that each point on the
ground image is located on the ground in the satellite im-
age, disregarding the height of buildings and other 3D volu-
metric effects. So our projection is not suitable for crowded
cities with many tall buildings. For example, there are many
high buildings in the left three images of Fig. 2, which leads
to distinct views in the ground and satellite images. When
we project ground images into a satellite view, it is hard
to synthesize the blocked area and the height of buildings
without any 3D information.
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Figure 2. Our projection in VIGOR. The performance of our
projection is poor in the left three images due to significant occlu-
sion caused by numerous buildings. However, in the right three
images, our generated fake image closely resembles the satellite
image, thanks to the expansive field of view. Therefore, our pro-
jection is well-suited for open scenes.

2. Pseudo-Labels at different thresholds

In the left two images of Fig. 6 of our main paper, we an-
alyze the function of our threshold-filter by comparing the
two filter strategies of CVACT. Similarly, in the left two im-
ages of Fig. 3, we show the same function in CVUSA. Our
threshold-filter ensures the higher the threshold, the better
the quality of pseudo-labels.

In the right two images of Fig. 3, we show the effect of
different thresholds in our threshold-filter. In (C) CVUSA,
it’s clear that a low threshold brings a low correct ratio of
pseudo-labels, hindering the entire training process. Con-
versely, the higher threshold brings a higher correct ratio
of pseudo-labels, enhancing the effectiveness of the entire
training process. In (D) CVACT, the correct ratio of pseudo-
labels is high even with a low threshold, so our threshold-
filter has little effect on the training in CVACT. Totally, the
threshold-filter is very important when the initial correct ra-
tio of pseudo-labels is low.

3. Results in semi-supervised settings

In Tab. 1, we compare our semi-supervised method with the
advanced supervised method[2]. Firstly, when we have a
few labeled images (e.g., 1% in CVACT), our method can
take full advantage of unlabeled images and start a robust

retrieval system with good performance (R@1 is 68.29).
But Sample4Geo has a poor performance, with only 2.42
R@1. Secondly, we observe that the difficult samples are
very important for this task. For example, there are many
similar scenes in CVACT, so the performance has poor im-
provement when we give the model more labeled images
from 5% to 20%. Differently, the scenes are more complex
in cities of VIGOR, so the performance has significant im-
provement when we give the model more labeled images
from 5% to 30%. Lastly, our method achieves comparable
performance in semi-supervised settings compared to fully-
supervised settings. For example, R@1 is 78.10 with 5%
labeled images and R@1 is 84.44 with 100% labeled im-
ages in CVACT. Similarly, R@1 is 60.42 with 30% labeled
images which is close to 68.40 with 100% labeled images
in VIGOR (Chicago).

In Tab. 2, we provide the results with 30% labeled im-
ages in the same-area and cross-area settings of VIGOR in
4 cities. They still have good performances.

4. Activation maps

In Fig. 4, we compare the active maps of our method and
Sample4Geo[2]. Sample4Geo tends to pay attention to
road markings or trees, but our method tends to pay at-
tention to scene-level information. Similar to most unsu-
pervised methods[8], our model learns a more general rep-
resentation with a bigger receptive field than supervised
Sample4Geo[2] because it needs to focus on more areas to
enhance its discriminative features with unlabeled data in-
stead of ground-truth labels.

5. Implementation details

We report the result of the last epoch, not the best result
in all experiments. The learning rate and weight decay of
AdamW are set to 0.0001 and 0.03. Although we train the
encoders with 100 epochs (including 40 epochs for the cold-
start stage and 60 epochs for the semi-supervised stage), it
is easy to get good results with 40 epochs (including 10
epochs for the cold-start stage and 30 epochs for the semi-
supervised stage) like Sample4Geo [2]. Due to the entire
training being noise, we use label smoothing to smooth the
noise like Sample4Geo [2]. We don’t use the hard negative
sample sampling in [2], but this sampling is also useful for
our setting.
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Table 1. Results in semi-supervised settings. In the same area setting [10], there is little difference for training with all 4 cities and one
city, so we report the result in Chicago for simplicity and time-saving. “GT Ratio” denotes the ratio of ground-truth labels used for training.
The total number of image pairs is 35532 for CVACT and 12740 for VIGOR in Chicago. “w/o AMM” denotes our method without the
semi-supervised stage, i.e., training only on the fixed labeled images. As shown, our semi-supervised method improves performance by a
large margin.
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Figure 3. Pseudo-labels. The two left figures denote pseudo-labels produced by the highest or the difference value between the highest and
second-highest retrieved similarity scores after the cold-start stage in CVUSA. The right two figures are the trend chart of pseudo-labels’
counts at different thresholds in (C) CVUSA and (D) CVACT. We use blue to represent the strategies used in our method.

Type GT ratio R@1 R@5 R@10 R@1%
same-area 0.3 50.12 73.16 79.90 98.79
cross-area 0.3 32.76 55.09 63.63 94.04

Table 2. Results with 30% labeled images in VIGOR.

Type GT ratio R@1 R@5 R@10 R@1%
Sample4Geo [2] 0% 0.023 0.08 0.20 1.36
Classification [1] 0% 0.0 0.10 0.20 1.60

Ours 0% 82.96 92.96 94.43 97.37

Table 3. Results of different methods on CVACT Val. We apply
the supervised CVGL and classification-based instance retrieval,
i.e., Sample4Geo [2] and [1], to the unlabeled data. As shown,
existing methods are not suitable for solving the huge spatial and
imaging gaps between ground and satellite images.
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Ours Sample4Geo
Figure 4. Active Maps. The supervised Sample4Geo [2] is more semantically rich (e.g., trees), but our unsupervised method is more
general, with a bigger receptive field and comparable active features at the scene level [8].


	. Visual comparison of different projections
	. Pseudo-Labels at different thresholds
	. Results in semi-supervised settings
	. Activation maps
	. Implementation details

