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7. Proofs
Theorem 1. Following the notations in Algorithm 1, for
any " 2 (0, 1), the attack is successful with probability at
least 1 � " if T > log1�� ", where � > 0 is a strictly
positive lower-bound on the success probability shared by
every single attack.

Proof. Let Et denote the event that the t-th attack is suc-
cessful, and let E denote the event that at least one attack is
successful. We want to proof that when T > log1�� ",

P (E) > 1� ".

The left-hand side of the inequality can be expanded as

P (E) =P ([T
t=1Et) = 1� P (\T

t=1¬Et)
=1�⇧T

t=1P (¬Et| \t�1
s=1 ¬Es)

=1�⇧T
t=1(1� P (Et| \t�1

s=1 ¬Es))

For every single attack we have a strictly positive lower-
bound on the success probability, regardless of previous
attacks. Specifically, we have P (Et| \t�1

s=1 ¬Es) > � for
t = 1, · · · , T . Further considering T > log1�� ", we have

P (E) =1�⇧T
t=1(1� P (Et| \t�1

s=1 ¬Es))
�1� (1� �)T > 1� "

We make the following side comment to avoid potential am-
biguities in the statement of the theorem. The statement
A strictly positive lower-bound on the success probability
shared by every single attack DOES NOT refer to a strictly
positive lower-bound on the marginal success probability
P (Et), t = 1, · · · , T . It is obvious that P (Et) > �, t =
1, · · · , T do not lead to the conclusion, by considering the
counter case where P (Et| \t�1

s=1 ¬Es) = 0, t = 1, · · · , T .
The statement in the theorem is stronger, in the sense that
the strictly positive lower-bound applies to the success prob-
ability of the attack at every step, regardless of previous at-
tacks. Or in other words, considering all possible previous
attacks and results, the strictly positive lower-bound applies
to the worst-case attack at the current step.

Theorem 2. Assume there is a distance measure D defined
in Y such that (i) p is (✏p,↵)-local-continuous around yC ,
(ii) every q 2 S is local-continuous around yC , and (iii)

there exists ✏c > 0 such that BD(yC , ✏c) ✓ YC . The ob-
jective defined in Eq. (8) has the following lower-bound for
any ⌘, � > 0,

max
x2X

Py⇠p̃(·|x)(y 2 YC) � max
x2X̃⌘,�

⌘C1 � ↵C2

where X̃⌘,� = {x 2 X : p(yC |x) � ⌘, ⇢(yC |x) < kx � �}
and C1, C2 are constants independent on x given as

C1 =

Z

y2BD(yC ,✏)
dy, C2 =

Z

y2BD(yC ,✏)
D(yC , y)dy,

where ✏ = min(✏p, ✏c, ✏⇢) with ✏⇢ := infx2X̃⌘,�
sup{✏ :

⇢(y|x) < kx, 8y 2 BD(yC , ✏)}.

Proof. First, let us prove ✏ > 0. ✏p > 0 and ✏c > 0 are as-
sured by the assumptions, so we only need to prove ✏⇢ > 0.
As p and every q 2 S are assumed to be local-continuous
around yC , ⇢ is local-continuous around yC , say (✏̃,�)-
local-continuous. For any x 2 X̃⌘,� and y 2 BD(yC , ✏̃),
we have |⇢(yC |x)� ⇢(y|x)| < �D(yC , y). Further,

⇢(y|x) ⇢(yC |x) + |⇢(yC |x)� ⇢(y|x)|
<kx � � + �D(yC , y)

For y 2 B(yC ,min(✏̃, �/�)), ⇢(y|x) < kx. Thus, ✏⇢ �
min(✏̃, �/�) > 0.

Next, let us move back to the main objective. By apply-
ing Bayes’ theorem, we have

max
x2X

Py⇠p̃(·|x)(y 2 YC)

=max
x2X

Py⇠p(·|x)(y 2 YC |⇢(y|x) < kx)

=max
x2X

Py⇠p(·|x)(⇢(y|x) < kx, y 2 YC)

Py⇠p(·|x)(⇢(y|x) < kx)

�max
x2X

Py⇠p(·|x)(⇢(y|x) < kx, y 2 YC)

=max
x2X

Z

y2Y
I(y 2 YC)I(⇢(y|x) < kx)p(y|x)dy.

The inequality comes from Py⇠p(·|x)(⇢(y|x) < kx)  1.
We will next only consider prompts in X̃⌘,� . Recall that for
any x 2 X̃⌘,� and y 2 BD(yC , ✏), we have y 2 YC and
⇢(y|x) < kx. Thus, we can remove the two indicators by
narrowing the scope of integral to BD(yC , ✏).
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Z

y2BD(yC ,✏)
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Z
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Finally, by utilizing the local-continuity of p, we get the
desired lower-bound.

max
x2X

Py⇠p̃(·|x)(y 2 YC)

�max
x2X̃⌘

Z

y2BD(yC ,✏)
p(y|x)dy
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Z

y2BD(yC ,✏)
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8. On Future work
In this paper, we consider the setting where an attacker can
interact with a target model in the online manner. Future
work includes the setting of transferring an attack from a
set of source models to a target model via a generalization
property of attacks [61] by controlling the mutual informa-
tion to avoid over-fitting to the source models [19].

9. Details on Fine-tuning
We fine-tune the pre-trained StableDiffusion-v1-4 model
provided by Huggingface on two datasets. Given the dif-
ferent sizes of the two datasets, the fine-tuning steps are set
to 5000 and 25,000 for POKEMON and LAION-mi respec-
tively. For fine-tuning both datasets, the batch size is set to
1, the gradient accumulations step is set to 4, and the learn-
ing rate is 1e-5.

10. Infringement Judgment
To determine whether samples generated by model p in-
fringe the copyright of the target image, we need to as-
sign ground-truth labels to these samples. Unfortunately,
to our knowledge, there is currently no widely recognized

computable standard for determining whether an image in-
fringes copyright. In fact, the criteria for copyright in-
fringement determination may evolve with changing soci-
etal perceptions. Alternatively, we rely on the similarity
between samples and the target image as the basis for deter-
mining infringement. In order to distinguish between non-
infringing and infringing samples, an ideal similarity score
should assign lower scores to non-infringing samples and
higher scores to infringing samples. Recognizing the lim-
itations of a singular similarity measure, we compare the
performance of SSCD [31] and CLIP score for determining
copyright infringement. In Fig. 5, we plot the histograms
of SSCD scores and CLIP scores for images generated by
original captions of all target copyrighted images in two
datasets. We can observe that the distributions of SSCD
scores demonstrate a more clearly bimodal pattern com-
pared with CLIP scores. This means that non-infringing and
infringing samples can be better distinguished by the two
modes of distribution of SSCD scores. In Fig. 6, we show
example images with different values of similarity scores
in ascending order. We can find that non-infringing sam-
ples may have higher CLIP scores than infringing samples
with target images. However, there is a clear threshold (e.g.,
50%) for SSCD score to distinguish non-infringing and in-
fringing samples. Thus, in this paper, we use the SSCD
score for infringement judgment.

In Sec. 5.3, we report results with SSCD-50% as the in-
fringement threshold. Further, considering the evolving na-
ture of copyright infringement standards, we utilize other
varying thresholds. According to the observation in Fig. 5,
we consider modeling the SSCD score distribution as a mix-
ture of two Gaussian distributions and use the mean value
of two means of the Gaussian distributions as the similarity
threshold, denoted as SSCD-gmm. For POKEMON dataset,
we further consider SSCD-45% and SSCD-55%.

In Fig. 7, we also provide qualitative examples that are
close to the decision thresholds using Anti-NAF prompts for
generation. The qualitative examples verify that similarity
decision thresholds can be utilized to clarify between style-
similar and copyright-infringed generations effectively.

11. Results
In this section, we provide a detailed analysis of results in
Sec. 5.3 and additional results on human evaluation, other
similarity thresholds, and transfer attack.

11.1. Detailed Analysis on Results
In Fig. 8, we show example outputs of three target copy-
righted images under four attack and defense scenarios.
Similar to Fig. 2, using a benign prompt (such as the origi-
nal caption), in the first column, we can observe that outputs
without copyright protection infringe the copyright of target
images with high probability; in the second column, after



(a) Distributions of SSCD and CLIP score on 5 copyrighted images in the POKEMON dataset. Each column corresponds to one target image.

(b) Distributions of SSCD and CLIP score on 5 copyrighted images in the LAION-mi dataset. Each column corresponds to one target image.

Figure 5. Distributions of SSCD and CLIP similarity score on all target copyrighted images in two datasets using the original caption as
prompts. The distributions of the SSCD score are more clearly bimodal to distinguish between non-infringing and infringing samples.

copyright protection, all samples are non-infringing content
as CP-k rejects all infringing samples. In the third column,
we find that an amplification attack with a benign prompt
can be unsuccessful, because such a prompt may not pro-
vide a strictly positive probability of producing infringing
generations from models protected by CP-k. However, in
the last column, with an adversarial prompt obtained from
our proposed Anti-NAF algorithm, we can see that most of
the outputs are copyright-infringed, which means that the
probability of infringing samples is largely amplified.

In Fig. 9, we give detailed FAR-AR curves on each target
copyrighted image in LAION-mi dataset. We can find that
our proposed bandit amplification method performs more
steadily in the worst cases. For example, in Figs. 9a and 9d,
when acceptance rate is lower than 20%, the FAR of Anti-
NAF with amplification is nearly 0%; while "-greedy-max/-
cdf bandit amplification can adapt to follow the best choice
of prompts (e.g., PEZ or CLIP-Interrogator) and keep a
competitive FAR score.

11.2. Human Evaluation

In Tab. 3, we conduct a human evaluation on two target
copyrighted images from two datasets. We randomly select
100 accepted samples obtained from each of the two threat
models (the original caption and "-greedy-cdf). For each
target image, a total of 200 samples are randomly shuffled
and displayed to 5 graduate students. They are told to label
each sample as non-infringing or infringing the copyright
of the given target image. Finally, we report their average
copyright infringement rates.

11.3. Results on Other Similarity Thresholds

The results on the additional thresholds described in Sec. 10
are reported in Tabs. 6 and 7. We can find that under more
strict similarity thresholds, our proposed Anti-NAF can also
provide a non-trivial probability of producing infringing
content even with a low acceptance rate. Besides, Anti-
NAF outperforms other threat prompts under all different
similarity thresholds, highlighting its effectiveness.



SSCD score: 0% 100%50%

CLIP score: 0% 100%50%

SSCD score: 0% 100%50%

CLIP score: 0% 100%50%

Target image

Target image

Figure 6. Example images generated from the original caption of target images (non-infringing and infringing images are marked with
green and red boundaries, respectively). From left to right, images are sorted by similarity score in ascending order. An ideal similarity
score threshold should distinguish between non-infringing (lower score) and infringing samples (higher score). From the example images,
the SSCD score performs much better than the CLIP score.

Figure 7. Qualitative examples near the similarity decision thresh-
olds (target, non-infringing, and infringing images are marked
with black, green, and red boundaries, respectively).

11.4. Results on Transfer Attack

In Tab. 4, we investigate the generalizability of our proposed
Anti-NAF algorithms on transfer attack settings. Specif-
ically, the adversarial prompt optimization is conducted
based on a fine-tuned StableDiffusion-v1-4 model, while
the obtained prompts are then utilized to attack the fine-
tuned StableDiffusion-v1-5 model. The results indicate that
prompts generated on a white-box model using Anti-NAF
can serve as candidate prompts for VA3 to attack other
black-box models. We hope this study can inspire future
work to explore black-box attacks in practical scenarios.

12. Additional Results on Ablation Study
In Tab. 8, we report the results of the ablation study
on LAION-mi dataset. We can observe that the results

Dataset Caption (w/o Amp.) "-greedy-cdf Amp.

POKEMON 0.6% 83.0%
LAION-mi 0.4% 42.4%

Table 3. Human evaluation results of copyright-infringement rate
on selected target images of two datasets. Acceptance rates of 10%
and 40% are applied for POKEMON and LAION-mi respectively.

Methods FAR@5%AR" FAR@15%AR"

Caption 2.13% 11.07%
Anti-NAF 9.07% 21.87%

Table 4. Results on selected target images of POKEMON. The
prompts of Anti-NAF are obtained with StableDiffusion-v1-4,
while attacks are conducted on StableDiffusion-v1-5.

show similar trends as that of the POKEMON dataset in
Tab. 2. This further verifies that the optimization objec-
tive of our proposed Anti-NAF algorithm is effective and
well-balanced between Lp and Lq with the help of loss clip
bound '. In Tab. 5, we also report ablation experiments
on other choices of denoising steps T of text-to-image dif-
fusion models. We can find that our proposed Anti-NAF
keeps superior performance, suggesting that its effective-
ness is immune to different T .



Output w/o CP-k Output w/ CP-k Amp. output w/ CP-k Anti-NAF Amp. output w/ CP-k 

Figure 8. Example outputs given the copyright images in the second row of Fig. 3 as targets (potential infringing images are marked with red
boundaries). In the first column, using a benign prompt, we observe a high incidence of infringing content from models without copyright
protection (“w/o CP-k”). In contrast, all samples in the second column are safe after applying the copyright protection mechanism (“w/
CP-k”). In the third column, we find that amplification (Amp.) attack with a benign prompt can be unsuccessful. However, by amplification
attack with an adversarial prompt obtained from our proposed Anti-NAF algorithm, most outputs in the last column are copyright-infringed.

T Methods FAR@5%AR" FAR@15%AR"

25 Caption 0.68% 3.52%
Anti-NAF 12.32% 14.44%

100 Caption 0.00% 3.40%
Anti-NAF 9.24% 9.52%

Table 5. Results with different denoising steps T on POKEMON.



Methods SSCD-45% SSCD-55%
CIR FAR@5%AR" FAR@15%AR" CIR FAR@5%AR" FAR@15%AR"

Caption (w/o Amp.) 47.96% 0.84% 3.60% 42.64% 0.48% 2.64%
CLIP-Int. (w/o Amp.) 31.28% 3.44% 5.24% 18.64% 0.64% 1.48%
PEZ (w/o Amp.) 13.88% 3.28% 5.64% 5.60% 0.92% 1.52%
Anti-NAF (w/o Amp.) 22.56% 14.68% 19.80% 8.08% 5.08% 6.52%
Caption (w/ Amp.) 100.00% 14.64% 38.72% 100.00% 14.64% 38.68%
CLIP-Int. (w/ Amp.) 99.84% 24.12% 48.00% 99.84% 17.64% 44.16%
PEZ (w/ Amp.) 74.44% 30.64% 48.88% 63.32% 15.52% 34.28%
Anti-NAF (w/ Amp.) 99.92% 86.28% 96.48% 99.36% 62.12% 66.44%

Table 6. Quantitative results on POKEMON dataset using SSCD-45% and SSCD-55% as the threshold for infringement judgment. (CLIP-
Int. is the abbreviation for CLIP-Interrogator).

Methods POKEMON LAION-mi
CIR FAR@5%AR" FAR@15%AR" CIR FAR@10%AR" FAR@30%AR" FAR@50%AR"

Caption (w/o Amp.) 40.40% 0.08% 1.52% 48.52% 0.00% 0.00% 0.08%
CLIP-Int. (w/o Amp.) 23.96% 1.72% 2.76% 38.04% 0.00% 0.00% 0.20%
PEZ (w/o Amp.) 8.28% 0.28% 0.80% 9.64% 0.00% 0.00% 0.00%
Anti-NAF (w/o Amp.) 16.20% 11.48% 13.12% 26.32% 0.12% 0.20% 1.68%
Caption (w/ Amp.) 100.00% 3.56% 35.52% 100.00% 0.00% 0.00% 14.72%
CLIP-Int. (w/ Amp.) 97.96% 14.68% 26.36% 100.00% 0.00% 0.00% 46.84%
PEZ (w/ Amp.) 61.00% 10.80% 25.44% 81.56% 0.00% 0.00% 4.92%
Anti-NAF (w/ Amp.) 89.28% 48.32% 67.04% 99.68% 26.24% 39.96% 59.44%

Table 7. Quantitative results using SSCD-gmm as the threshold for infringement judgment. (CLIP-Int. is the abbreviation for CLIP-
Interrogator).

Methods CIR FAR@10%AR" FAR@30%AR" FAR@50%AR"

Anti-NAF 33.84% 2.64% 4.16% 7.00%
Lp only 30.44% 0.28% 1.68% 2.76%
w/o ' 33.64% 0.32% 0.60% 1.16%

w/o Lq 24.28% 0.76% 2.84% 3.28%

Table 8. Ablation study for Anti-NAF algorithm on LAION-mi.



(a) FAR-AR curves on No.1 target. (b) FAR-AR curves on No.2 target. (c) FAR-AR curves on No.3 target.

(d) FAR-AR curves on No.4 target. (e) FAR-AR curves on No.5 target. (f) Overall averaged FAR-AR curves.

Figure 9. FAR-AR curves on each copyrighted image in LAION-mi. For No.1 and 4 target copyrighted images, Anti-NAF performs worse
when acceptance rate is lower than 20%, while bandit amplification methods show steady performance in these worst cases.
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