When StyleGAN Meets Stable Diffusion: a W_+ Adapter for Personalized Image Generation

Supplementary Material

This supplemental material mainly contains:

- Details of mapping network F_w in Section I
- Attribute editing in previous methods in Section II
- Analyses of two-stage training in Section III
- Visualization of residual cross-attention in Section IV
- Text prompt for training Stage I in Section V
- More generation and editing results in Figs. E and F
- Performance on other SD models in Figs. G and H
- More visual comparison with competing methods in Fig. I

I. Details of Mapping Network

![Figure A. Details of our mapping network F_w.](image)

The trainable modules of our W_+ adapter consist of two parts, 1) the mapping network with 7.1 M parameters, and 2) residual cross-attention with 31.6 M parameters. Details of our mapping network F_w are shown in Fig. A. To align with the input dimension of Stable Diffusion, the w_+ vector is divided into four groups. Each group is projected to a token of dimension 768 for Stable Diffusion V1.*

II. Attributes Editing in Previous Methods

Fig. B shows that CelebBasis encounters challenges in preserving the identity details. Both FastComposer and IP-Adapter-Face) tend to overlook the facial attribute descriptions provided in the text captions. In contrast, our method not only excels in preserving identity but also edits common attributes with a seamless outcome.

III. Analyses of Two-stage Training

The training of our W_+ adapter contains two stages. In Stage I, the model learns a mapping from W_+ to the SD latent space. Subsequently, in Stage II, the mapping network is fixed, and only the residual cross-attention is fine-tuned to facilitate in-the-wild generation. It is noteworthy that adopting a one-stage training approach, which directly optimizes the mapping network and residual cross-attention for in-the-wild generation, results in challenges in preserving consistent layout when editing attributes (see the 1-st row in Fig. C). This observation suggests that directly embedding the w_+ vector into diverse and complex in-the-wild generation may struggle to align well with the W_+ space, thereby showing the necessity of our two-stage training approach.

IV. Visualization of Residual Cross-attention

To demonstrate the influence of our residual cross-attention on the hidden states $f'z$, we visualize the cross-attention score of the last layer by computing $\text{Softmax} \left(\frac{Q^T K^{1/2}}{\sqrt{d}} \right)$ at time step $t = 1$. In Fig. D, we observe an obvious impact of our w_+ vector on the facial region, with minimal impact on the background. This observation showcases the effectiveness of our W_+ adapter for editable face generation.

V. Text Prompt for Training Stage I

The text prompt describing a human face in Stage I includes:

- a face
- a photo of a face
- a close-up of a face
- a depiction of a face
- a good photo of a face
- a photography of a face
- a cropped photo of a face
- a good photography of a face
- a close-up photography of a face

![Figure B. Results of competing methods with text attributes.](image)
Figure C. Comparison between one- and two-stage training.

Figure D. Visualization of residual cross-attention score.
Figure E. More results of our W_+ adapter for in-the-wild generation with different scenarios and attribute editing.
Figure F. More results of attribute editing for a single reference.
Figure G. Results of our W_* adapter using other SD model (i.e., Protogen).
Figure H. Results of our W_+ adapter using other SD model (i.e., dreamlike-anime).
Reference

Figure I. More visual comparison with competing methods in different scenarios.