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In this supplementary, we first give more visualization results, then detail the datasets and the implementation, and finally
discuss the limitations and state the social impact.

A. More Visualizations
In this section, we first present more visualizations of the samples from the test set under two comparison settings: (i)
single-turn editing, and (ii) multi-turn editing. To make the comparison more representative, we compare our ZONE with
three state-of-the-art (SOTA) text-to-image approaches, Text2LIVE (T2L) [1], InstructPix2Pix (IP2P) [2], and MagicBrush
(MB) [9]. Then we conduct an ablation study to show the efficacy of our fused IP2P module, through cross-attention map
visualization.

A.1. Single-Turn Editing Examples

We show more single-turn editing examples to further validate ZONE’s remarkable ability of local image editing. In particular,
we compare it with the other methods for local editing using 9 images and their corresponding instructions (or prompts
equivalent to the instructions). As evident in Fig. A, the results generated by ZONE surpass those of the other methods,
demonstrating its impressive prowess in local editing.

A.2. Multi-Turn Editing Examples

We use our ZONE to edit 2 images in a multi-turn style and compare the editing results with those obtained from the other
methods. Specifically, each method is employed to edit each image three times, with different instructions. As illustrated in
Fig. B, our ZONE can achieve high-quality local edits under multiple instructions and preserve the original image’s non-edited
regions. In contrast, the results generated by the other methods exhibit noticeable distortions from the original images after
multiple rounds of editing, which is not preferred in practical applications.

A.3. Cross-Attention Map Visualization

As shown in Fig. C, the first row demonstrates the editing results, and the second row illustrates the averaged cross-attention
maps. From the cross-attention maps, we can see that by fusing the denoised latents of the two methods as described in
Equation (5) of the main paper, our approach achieves a better localization capability under the “Remove” editing intent
compared to the two methods.

B. Implementation Details
We conduct all our experiments based on open-source projects and models. We adopt an NVIDIA V100-SXM2-32GB GPU
for the action classifier training and for ZONE testing. The action classifier AI leverages the instruction embeddings extracted
by the text encoder of InstructPix2Pix (IP2P) [2] as its input, and outputs the probability logits for each action. To train the
action classifier, we first use GPT-3.5 to generate samples for training and testing, and then we lock the weights of the text
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Figure A. Single-turn editing examples. IP2P: InstructPix2Pix [2]; T2L: Text2LIVE [1]; MB: MagicBrush [9].
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Figure B. Multi-turn editing examples. IP2P: InstructPix2Pix [2]; T2L: Text2LIVE [1]; MB: MagicBrush [9]. Best viewed zoomed in.
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Figure C. Cross-attention map comparisons. The darker parts in each cross-attention map (the second row) denote the edit regions.

encoder of IP2P and optimize AI using Adam [4] with a learning rate of 0.1 for 30 epochs. The action classifier achieves
100% top-1 classification accuracy on the test set.

We set 20 sampling steps for the fused IP2P and average the cross-attention layers of the first three UNet upsampling
blocks and the second to the fourth downsampling blocks to get the fused cross-attention maps among all the denoising steps.

The action classifier AI is a simple Multi-Layer Perceptron (MLP), comprising two linear layers with an intermediate
ReLU activation function. The input dimension of the first linear layer and the length of the embedding outputted from the
CLIP text encoder [7] are the same (equal to 768), and the output dimension at this layer is 128. The intermediate ReLU
function introduces non-linearity to the output, and the second linear layer takes the 128-dimensional output from the ReLU
function and produces a 3-dimensional output to classify the given instruction.

C. Experimental Details
C.1. Baselines

To ensure consistency and convenience in method comparison, we uniformly adopt the implementation from the diffusers
project 1 for IP2P [2], MagicBrush [9], DiffEdit [3], and Pix2Pix-Zero [6], and use their default parameters to generate results
and calculate the metrics. For Text2LIVE [1], we conduct experiments using its official code repository. To eliminate the
potential discrepancies in generative capabilities arising from different versions of Stable Diffusion used across these meth-

1https://github.com/huggingface/diffusers



ods, we employ Stable Diffusion 1.5 2 as the base model. Notably, since half of these methods do not support instructions as
textual inputs, we design text prompts or additional assistance equivalent to instructions during our comparative experiments
to achieve a relatively fair comparison.

C.2. Datasets

In this section, we provide the generation details of the dataset for action classification and the test set that we collect to
evaluate the metrics for our ZONE and other editing methods.

Dataset for action classification. We employ GPT-3.5 3 to generate the dataset used for training the action classifier. Our
primary objective is to generate sentences that closely resemble user instructions, with the editing focus on common items
found in real images. To achieve this, we choose categories from the COCO dataset to serve as the vocabulary for sentence
generation. The following prompt is designed for generating training and testing data:

“Now you are a dataset bot, who will generate a training dataset for a three-fold (change, add, and remove)
sentence classification task. Specifically, you should generate a sentence along with its label. In this task, we
aim to generate a dataset for “change”, “add”, and “remove” (labeled 0, 1, 2): For example: “turn the cat into a
dog, 0”, “give the dog a hat, 1”, “get rid of the person on the left, 2”. You should generate 450 sentence-label
pairs if I give the instruction “train”, and 150 pairs when I give the instruction “test”. I expect your response to
be straight-forward, each sentence should be within 30 words, and you should freely select the words in the fol-
lowing list: [ ‘person’, ‘bicycle’, ‘car’, ‘motorcycle’, ‘airplane’, ‘bus’, ‘train’, ‘truck’, ‘boat’, ‘traffic light’, ‘fire hydrant’,
‘stop sign’, ‘parking meter’, ‘bench’, ‘bird’, ‘cat’, ‘dog’, ‘horse’, ‘sheep’, ‘cow’, ‘elephant’, ‘bear’, ‘zebra’, ‘giraffe’,
‘backpack’, ‘umbrella’, ‘handbag’, ‘tie’, ‘suitcase’, ‘frisbee’, ‘skis’, ‘snowboard’, ‘sports ball’, ‘kite’, ‘baseball bat’,
‘baseball glove’, ‘skateboard’, ‘surfboard’, ‘tennis racket’, ‘bottle’, ‘wine glass’, ‘cup’, ‘fork’, ‘knife’, ‘spoon’, ‘bowl’,
‘banana’, ‘apple’, ‘sandwich’, ‘orange’, ‘broccoli’, ‘carrot’, ‘hot dog’, ‘pizza’, ‘donut’, ‘cake’, ‘chair’, ‘couch’, ‘pot-
ted plant’, ‘bed’, ‘dining table’, ‘toilet’, ‘tv’, ‘laptop’, ‘mouse’, ‘remote’, ‘keyboard’, ‘cell phone’, ‘microwave’, ‘oven’,
‘toaster’, ‘sink’, ‘refrigerator’, ‘book’, ‘clock’, ‘vase’, ‘scissors’, ‘teddy bear’, ‘hair drier’, ‘toothbrush’ ] and make sure
the sentence is short and clear, and the label is correct, and the dataset is balanced. Please just reply with the
sentence-label pairs, and wait for my instructions. Note that the generated sentence-label pairs should not repeat.”

The data generated by GPT-3.5 undergoes manual verification. The final training dataset includes 150 samples each for
the “add”, “remove”, and “change” actions, while the test dataset comprises 50 samples for each action. We show some
samples from the training dataset in Table A.

Turn the bicycle into a motorcycle, 0
Make the apple a banana, 0

Swap the baseball glove for a tennis racket, 0
Replace the chair with a couch, 0

Put a frisbee next to the cat, 1
Attach a remote to the TV, 1

Include a toothbrush on the dining table, 1
Give the horse a suitcase, 1

Remove the horse, 2
Take away the umbrella, 2
Delete the traffic light, 2
Erase the microwave, 2

Table A. Examples of the training dataset of the action classifier.

2https://huggingface.co/runwayml/stable-diffusion-v1-5
3https://chat.openai.com



Test set for evaluation. We present the test set utilized in our evaluation in Fig. D. Initially, we gather 60 images from the
Internet and create 40 synthetic images using Stable Diffusion 1.5 [8]. Subsequently, each image is cropped to a resolution
of 512 × 512. Then we use BLIP [5] to caption each image and manually annotate the instructions, output captions, source
objects, and target objects. Three annotation examples are shown in Table B.

Keys Example 1 Example 2 Example 3
action Change Remove Add

input caption A blue car in front of a forest A man in black with a tie A photo of Elon Musk
output caption A red car in front of a forest A man in black A photo of Elon Musk with glasses

instruction paint the car red get off his tie give him glasses
source object blue car a tie N/A
target object red car N/A glasses

Table B. Three annotation examples. “N/A” indicates the absence of words.

C.3. Evaluation Metrics

L1/L2 distance. The L1 and L2 distances serve as the metrics for evaluating structural and pixel-wise similarities between
two images. The L1 distance measures absolute differences in pixel values, while the L2 distance calculates squared differ-
ences. Both metrics play a critical role in assessing dissimilarity, with smaller distances indicating greater image similarity
in both pixel intensity and spatial structure.

LPIPS score. LPIPS (Learned Perceptual Image Patch Similarity) [10] is a metric designed for evaluating the perceptual
similarity between two images. It takes into account both pixel-level differences and high-level visual features, providing a
comprehensive measure of how similar images appear to humans.

CLIP-based metrics. CLIP, or Contrastive Language-Image Pre-training, is a transformative model that excels in under-
standing the intricate relationships between text descriptions and images [7]. Through a pre-training process that employs
contrastive learning, CLIP learns a shared embedding space where images and text descriptions are represented as vectors.
This shared space is designed to bring semantically related content in close proximity. The model tokenizes images into
regions and text into tokens, leveraging a transformer architecture with cross-modal attention to establish connections be-
tween corresponding regions and tokens. Both the CLIP-I and CLIP-T metrics evaluate the input image/text in the shared
embedding space:
• CLIP image similarity (CLIP-I) is designed to evaluate the image quality in both semantics and structure. This metric is

computed by calculating the cosine similarity of the embedding vectors of the source image and the target image.
• CLIP text-image similarity (CLIP-T) is used to evaluate the alignment between the edited image and its corresponding

caption. More specifically, CLIP-T calculates the cosine similarity between the embedding vectors of the edited image and
its corresponding caption.

More evaluation details. We employ 512× 512 images as inputs for each method during evaluations. However, DiffEdit
[3] requires image inputs with a resolution of 768× 768 to function properly. So we first resize the test images to 768× 768
for DiffEdit to ensure its proper performance and resize the outputs back to 512× 512 to calculate the metrics.

C.4. Human Evaluation

Success rate. We invite five volunteers to annotate the success rates of the six methods on the test set. To simplify the
annotation process and avoid bias, we design a tool that can display the editing results of each method in a randomly shuffled
order and anonymous style (see Fig. E). The volunteers are then asked to decide whether to accept or reject the edited
image based on the editing quality (i.e., preservation of the non-edited regions and the realism of the edited image) and text-
image alignment between the output caption and the edited image. Ultimately, the success rate of each method is obtained
by dividing the number of accepted results by the total number. To minimize annotation bias, we calculate the mean and
standard deviation of the success rates from the five volunteers and demonstrate the results in Table 2 of the main paper.



Figure D. Images in the test set. We calculate the evaluation metrics and provide visualizations in the main paper with images in this set.

User preference rate. We conduct a user study, which includes 16 sets of randomly selected editing results. Each set
contains six results obtained by the six methods that we compare in the experiment, presented in a randomly shuffled order.
The users are asked to give a preference score according to the degree of agreement between each editing result and the
corresponding instruction, as well as the similarity to the original image, with the score from 1 to 10 and a higher score
indicating a higher preference. A total of 30 users participate in this test. The final results are calculated by dividing the total



Figure E. A screenshot of the annotation tool. The original image, the instruction, and three results randomly selected from the six
methods are displayed each time.

score obtained for each method Si by the total score obtained for all methods:

UPR(i) = 100× Si/
6∑

i=1

Si. (A.1)

C.5. Additional Ablations

We perform further ablations to demonstrate the effectiveness of each component within our proposed ZONE. First, we ablate
on the β parameter of the fused IP2P module. β is a hyperparameter that controls the guidance strength of MagicBrush (MB)
on the fused IP2P module. A higher β emphasizes MB’s effects on the editing results (please check L302-314 in our paper
for more details). We illustrate the results generated by the models under various β in Fig. F:
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Figure F. Ablation on β. As β decreases from left to right, the generated result increasingly resembles that produced by InstructPix2Pix
and less resembles that generated by MagicBrush. Given the limits of current instruction-guided diffusion models, we employ this character
to handle different editing actions.

Then we conduct an ablation study on the components of ZONE, including SAM and the edge smoother, with human eval-
uation using the user preference rate (UPR) and the CLIP image similarity (CLIP-I) for metrics evaluation. As demonstrated
in Tab. C, the implementation of SAM notably boosts the user preference rate, signifying a visually discernible enhancement
compared to its absence, a fact also mirrored in the CLIP-I score. Concurrently, the user preference rate exhibits a significant
improvement with the integration of the Edge Smoother, underscoring its efficacy.

D. Limitations.
While our method can produce impressive local manipulations of images and address the over-edit issue of InstructPix2Pix, it
still has limitations. First, its editing capabilities are constrained by the instruction-guided diffusion models we employ, which
may lead to occasional ineffectiveness in editing. This issue can be addressed in the future with more powerful instruction-
guided diffusion models. Secondly, our method falls short of localization in complex scenes (e.g., multiple similar objects or
tiny objects), which is a challenging task that still needs to be explored. Lastly, the current set of editing actions is relatively
limited, more actions like “move”, “resize”, or “copy” will be considered in future work.



Component SAM Edge Smoother
w/o w/ w/o w/

CLIP-I ↑ 0.95 0.97 0.97 0.97
UPR (%) ↑ 5.4 94.6 22.7 77.3

Table C. Ablation on ZONE’s components. We evaluate both components with human evaluation and CLIP metrics.

E. Social Impact
Our work introduces a novel method for image local editing, which edits a specific region in the original image with an
intuitive instruction. This method allows for precise local editing without affecting other areas of the image, resulting in a
realistic final composite image. Malicious groups may exploit this advantage to spread false information or cause misun-
derstanding. However, we believe that the harm caused by such improper usage can be mitigated with AI-generated content
watermarking algorithms or supervising regulations.
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