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Organization of the Supplementary Material
We have provided the table of contents below to better navigate the content in the supplemental material.

Section A provides the BadCLIP optimization triggers and the algorithmic flow for training the poisoning model.
Section B provides more details to illustrate the backdoor attacks and backdoor defenses.
Section C demonstrates the effectiveness of the attack under more rigorous scenarios.
Section D analyzes the impact of the details of the algorithm components on the attack effectiveness.
Section E discusses the ethical analysis for studying backdoor attacks.

A. Detailed Algorithm of BadCLIP
A.1. Optimization Process of the Visual Trigger Pattern

Algorithm 1 Optimize Visual Trigger Pattern with Dual-Embedding

1: Input: Visual encoder fv , textual encoder f t, pre-trained model parameters Θ(0), optimized dataset Dopt, images and
descriptions of the target label {I⋆, T ⋆}, number of Adam’s iter epochs T , learning rate η > 0, hyper-parameters
λ1, λ2 > 0, size of the visual trigger pattern s > 0, image enhancement probability pv > 0, text enhancement probability
pt > 0, image enhancement method gv , and text enhancement method gt.

2: Output: Visual trigger pattern δv ∈ Rw×h×c.
3: fv(·;θ(0)

v ), f t(·;θ(0)
t )← Θ(0), w ← s, h← s, c← 3, δv ← Gaussian noise

4: for j = 1 to T do
5: for mini-batch B = {v(1)

i }bi=1 ⊂ Dopt do
6: Generate random numbers r = random.random()
7: if r < pv then
8: v

(1)
i = gv(v

(1)
i )

9: end if
10: if r < pv then
11: T ⋆

i = gt(T ⋆
i )

12: end if
13: Put δv in the middle of image v

(1)
i to construct poisoning sample v̂

(1)
i

14: Compute visual embedding features of the poisoned image fv(v̂
(1)
i ;θ

(0)
v )

15: Compute visual embedding features of the clean image fv(v
(1)
i ;θ

(0)
v )

16: Compute visual embedding features of the target image fv(I⋆i ;θ
(0)
v )

17: Compute textual embedding features of the target description fv(T ⋆
i ;θ

(0)
t )

18: Bring in the hyper-parameter λ1, λ2 to calculate the loss function L through Eq. (12)
19: Update δv via minimization of the loss function L by Adam with η
20: end for
21: end for
22: return Visual trigger pattern δv .



The above Alg. 1 aims to optimize the visual trigger pattern by the dual-embedding from the CLIP model. The algorithm
first initializes the visual and text encoders, sets the trigger pattern size, and initializes the visual trigger pattern with Gaussian
noise. Each iteration traverses a small batch of samples from the optimized dataset. The algorithm first applies image and text
augmentation methods based on preset probabilities for each sample. Then, visual trigger patterns are added to the images
to construct poisoned samples. Visual embedding features are computed for thesepoisoned images, the original clean image,
and the target image. And calculate the textual embedding features of the target description. Finally, the algorithm introduces
hyper-parameters to compute the overall loss function. It updates the trigger pattern using the Adam optimizer and a set
learning rate to minimize the loss function. This process is repeated for several epochs to get the final visual trigger pattern.

Here, we elaborate on the experimental details of the patch optimization process. The optimized datasetDopt is a subset of
the initial poisoning training set D1, including 10,000 images not belonging to target labels. {I⋆, T ⋆} represents images and
descriptions belonging to the target label. We randomly selected 128 image-text pairs from the CC3M dataset and repeated
up to 10,000 to match with the images in the optimized dataset. The number of iterations used for Adam optimization is 50,
and the optimization hyper-parameters we chose were the default values for Adam optimization in pytorch, e.g., a learning
rate is 1e-3. The patch size of triggers chosen for the main experiment is 16 × 16. In addition, to enhance the data richness
during the training process, we enhance the image v(1)

i and text τ⋆i during the training process with probability pv = 0.5 and
probability pt = 0.1, respectively. The image gv and text enhancement gt methods adopted are the AutoAugment [4] and the
EAD algorithms [15] in Pytorch, respectively. In the next ablation experiments, we show the benefits of data augmentation
on the effectiveness of the backdoor attack.

A.2. Training Process of the Poisoned Model

This Alg. 2 describes training a poisoned model from a pre-trained model. The algorithm defines in detail the dataset and
hyperparameters required for the poisoning (input) process. It takes as output the parameters of the poisoned model (lines 1-
2). After initializing the visual and textual encoders, we extract the features of all the images and texts in the initial poisoning
dataset (lines 3-5). Then, the similarity scores of the target label are computed, and three empty sets of samples are initialized:
farthest samples, boundary samples, and random samples (lines 6-11).

Subsequently, the algorithm determines the specific samples for each of these three sets, defines the set of images to be
poisoned, and generates the poisoned images and corresponding text descriptions (lines 12-15). Afterward, the images and
text descriptions in the initial poisoning dataset are replaced with the poisoned versions (line 16).

The following loop (lines 17-23) shows the poisoning process of the model. For each small batch of image and text pairs
in the poisoned dataset, the algorithm generates embeddings of multi-modality and computes the contrastive loss to update
the model parameters. Eventually, the parameters of the proposed model are returned (line 24).

We implement the poisoning attack by constructing a poisoned dataset for pre-trained models. For the latter training
process, we follow the standard settings of the poisoning part of CleanCLIP [1], with ten iterations (T = 10), a learning rate
of 1e-6 (η = 1e-6), and a batch size of 128 (N1 = 128). This is also consistent with other attack methods for poisoning
training.

A.3. Deeper Understanding of Poisoned Data Designs

In this section, we provide an in-depth understanding of the reasons for the success of the fine-tuning defense based on the
Bayesian rule perspective and use the parameter updating rule to derive how our design of the poisoning data will resist the
model fine-tuning.

Assumption 1 (Bayesian form of the learning model): We assume the existence of a probabilistic model P (D|θ),
where D is the observed data and θ represents the model parameters. Prior knowledge of this model is expressed through
the probability distribution P (θ), and upon observing data, the model’s knowledge is updated to the posterior distribution
P (θ|D).

Assumption 2 (Sequential receipt of incremental data): We assume that data D is received sequentially, i.e., D =
{D0,D1, ...,Dk}, where Dk is the data received in step k. Each step could involve data from a new task or additional
samples for an existing task.

Poisoning process. After obtaining parameters Θ(0) of the pre-trained model and the poisoning dataset D1, the posterior
probability of the poisoning model can be written as Eq. (3) in the main body, which is expressed as follows:

P (Θ(0) | D1) =
P (D1 | Θ(0))P (Θ(0))

P (D1)
∝ P (D1 | Θ(0))P (Θ(0)) (1)



Algorithm 2 Training Process of the Poisoned Model

1: Input: Visual encoder fv , textual encoder f t, pre-trained model parameters Θ(0), initial poisoning training dataset
{I(1), T (1)} ∈ D1, visual trigger pattern δv , poisoned samples Np, template descriptions for all labels T tem, poisoned
label c⋆, natural descriptions for target label T ⋆, learning rate η, and number of AdamW’s iter epochs T .

2: Output: Poisoned Model Parameters Θ(1).
3: fv(·;θ(0)

v ), f t(·;θ(0)
t )← Θ(0)

4: Extract all image features fv(I(1);θ(0)
v ) ⊆ Fv in the initial poisoning training dataset D1 by the visual encoder fv

5: Extract all text features f t(T tem;θ
(0)
t ) ⊆ F t from template descriptions T tem by the textual encoder f t

6: Calculate the feature scores of target label S⋆ of all images features Fv and text features F t

7: Initialize three empty sets: furthest samples Ifur = ∅, boundary samples Iboud = ∅, and random samples Irand = ∅
8: The number of samples in each set is N = Np/3
9: Initialize furthest samples: Ifur ← top-N images with lowest scores in S⋆

10: Initialize boundary samples: Iboud ← top-N images, which don’t belong to target label c⋆ but have highest scores in S⋆
11: Initialize random samples: Irand = I(1) \ (Ifur ∪ Iboud)
12: Define the set of images that need to be poisoned as Ipoi = Ifur ∪ Iboud ∪ Irand

13: Posting the visual trigger pattern δv in the middle of the images in set Ipoi forms the poisoned images set Î
14: Sampling from the natural descriptions of the target label T ⋆, select poisoned text descriptions T̂ equal in number to the

set of poisoned images.
15: Replace the original images and text description in D1 with Î and T̂
16: for j = 1 to T do
17: for mini-batch B = {v(1)

i , t
(1)
i }

N1
i=1 ⊂ D1 do

18: for each image v
(1)
i and corresponding text t(1)i do

19: Generate image embedding fv(v
(1)
i ;θ

(0)
v )

20: Generate text embedding f t(t
(1)
i ;θ

(0)
t )

21: end for
22: Calculate contrastive loss with image embeddings and text embeddings
23: Update parameters Θ(1) using AdamW with η by outer minimization of Eq. (8)
24: end for
25: end for
26: return final parameters of the poisoned model Θ(1).

Defense process. If the defender mitigates the negative effects of the poisoned model by fine-tuning the model, the
defender can do so by constructing a clean dataset D2. We start with the prior P (Θ(0)) and the data D1, and get the posterior
P (Θ(0) | D1). Thus, the posterior probability of the purified model can be expressed as follows:

P (Θ(0) | D2,D1) =
P (D2 | Θ(0))P (Θ(0) | D1)

P (D2 | D1)
(2)

where P (D2 | Θ(0)) is the likelihood of observing new data under the current parameters, and P (D2 | D1) is the normaliza-
tion constant.

Forgetting problem. During this process, when the model only receives new data D2 for fine-tuning training, the influence
of the old data D1 may be weakened, causing the model to forget the previously learned backdoor information. Mathemat-
ically, if the model only updates its parameters with D2, then the updated posterior probability may be quite different from
the previous posterior probability, leading to backdoor forgetting. At this time, the degree of forgetting the old data D1 after
the model parameters are updated on the new data D2 is as follows:

LMCL(Θ
(2);D1)− LMCL(Θ

(1);D1) (3)

where LMCL is the multi-modal contrastive loss function. Θ(1) and Θ(2) are the model parameters after the poisoning step
and the fine-tuning step, respectively.

Poisoned data designs. The defense purpose of backdoor fine-tuning aims at eliminating the adverse effects of the poison-
ing dataset D1 on the pre-trained model by constructing a clean data subset D2, thus correcting the erroneous associations



between the backdoor information and the target label. In addition, the constructed clean data subset D2 should also be con-
sistent with the distribution of the pre-training datasetD0 so as not to affect the model’s recognition performance. We assume
that the data associated with the poisoning target label in the clean data subsetD2 denotesM⋆

2 ⊂ D2, and the data associated
with the poisoning target label in the pre-training dataset D0 denotesM⋆

0 ⊂ D0. Then, we have P (M⋆
2) = P (M⋆

0).
To overcome model forgetting, our design is divided into two main aspects, visual and textual: ❶ on the visual side, we

want the trigger pattern of the trigger design to be both semantically consistent with the description possessed by the target
label and expect the trigger pattern to be semantically consistent with the appearance of the actual image possessed by the
target label;❷ on the textual side, the poisoned textual descriptions we constructed are sampled from the description owned
by the poisoned label. This means we expect the constructed poisoned image-text pairs to be as close as possible to the clean
image-text pairs owned with the target label. We define that the data related to the target label in the poisoning dataset D1 is
M⋆

1 and assume there is P (M⋆
1) ≈ P (M⋆

0). Since the similarity of the data distribution is transferable, we can then infer
that P (M⋆

1) ≈ P (M⋆
2).

At this time, M⋆
2 can be viewed as the set of memories in the poisoning dataset that are relevant to the learning of the

target label. This set is approximated to the poisoning sampleM⋆
1 in the poisoning dataset. The fine-tuned defense of the

poisoning model can be viewed as fine-tuning the poisoned model Θ(1) on the clean dataset D2 and the memory set M⋆
1.

The dataset D2 does not include the poisoning target label, and the memory setM⋆
1 includes the poisoning target label. The

gradient directions of these two tasks are not opposite, i.e., ⟨∇ΘLMCL(Θ
(1);D2),∇ΘLMCL(Θ

(1);M⋆
1)⟩ ≥ 0.

Theorem 1 (Mitigating forgetting in backdoor defense through the design of suitable poisoned datasets): In the
Bayesian framework, by constructing poisoning samples that closely resemble actual samples under the target label and by
updating the model parameters on a combination of these poisoning samples and additional clean datasets, the fine-tuning
process also cannot effectively forget poisoning samples previously introduced.

Proof. Next, we will demonstrate that under the condition ⟨∇ΘLMCL(Θ
(1);D2),∇ΘLMCL(Θ

(1);M⋆
1)⟩ ≥ 0, it is possible

to maintain the attack performance of the fine-tuned model on poisoning samples even during the fine-tuning process with
the clean data subset D2.

Let the parameter update of the poisoned model use the gradient descent method, and the parameter update rule is as
follows:

Θ(2) = Θ(1) − η∇ΘLMCL(Θ
(1);D2), (4)

where η is the learning rate, and ∇ΘLMCL(Θ
(1) is the loss gradient for the clean data subset D2 under the poisoned model

parameters Θ(1).
For the loss function on the memory setM⋆

1, we can use the first-order Taylor expansion to approximately express the
loss under the new parameters Θ(2):

LMCL(Θ
(2);M⋆

1) ≈ LMCL(Θ
(1);M⋆

1) + ⟨∇ΘLMCL(Θ
(1);M⋆

1),Θ
(2) −Θ(1)⟩. (5)

Substituting the parameter update rule Eq. (4) yields the following:

LMCL(Θ
(2);M⋆

1) ≈ LMCL(Θ
(1);M⋆

1)− η⟨∇ΘLMCL(Θ
(1);M⋆

1),∇ΘLMCL(Θ
(1);D2)⟩. (6)

Due to ⟨∇ΘLMCL(Θ
(1);M⋆

1),LMCL(Θ
(1);D2)⟩ ≥ 0 and η > 0, we can get as the following:

LMCL(Θ
(2);M⋆

1) ≤ LMCL(Θ
(1);M⋆

1). (7)

This means that the loss of the new parameter Θ(2) on poisoned samples will not be greater than the loss of the old
parameter Θ(1). With the above derivation, we can conclude that if the poisoning samplesM⋆

1 of the target label are kept
as close as possible to the actual samplesM⋆

2 of the target label, the process of learning a subset of clean data will not lead
to an increase in the loss of the new model on poisoning samplesM⋆

1. Therefore, constructing poisoning samples close to
the real samples of the target label is likely to resist backdoor information forgetting during model fine-tuning. Theorem 1 is
proved.

B. Details of the Backdoor Attacks and Defenses
B.1. Backdoor Attacks Settings

• In the BadNet [6] attack, for visual sample construction, we chose a trigger of size 16 × 16 and filled the trigger with
Gaussian noise generated from a standard normal distribution, which was then randomly affixed to different locations in



the image. For text sample construction, we randomly selected 80 text templates for describing bananas from the zero-shot
task of the ImageNet-1K dataset as text descriptions for the poisoning samples.

• In the Blended [3] attack, for visual sample construction, we chose a trigger image of the same size as the input image,
which was generated using a standard normal distribution. Then, we set the transparency of the trigger image to 0.2 and
added it to the clean image with transparency set to 0.8. For the construction of the text samples, it is the same as the
BadNet [6] attack.

• In the SIG [2] attack, the attacker spoofs the model by adding sine wave pattern noise to the image. For visual sample
construction, the size of the trigger pattern is the same as the input image size, the noise amplitude is 0.235, and the
frequency is 2πj × 6/224. Then, we added it to the clean image. For the construction of the text samples, it is the same as
the BadNet [6] attack.

• In the SSBA [10] attack, the attacker generates backdoor triggers using a steganography technique based on StegaStamp.
We follow the SSBA [10] code to train the encoder to construct visually poisoned samples, and the ciphertext is the
string ‘Stega!!’. The encoder embeds the ciphertext into the normal input image to generate the poisoned image. For the
construction of textual samples, it is the same as the BadNet [6] attack.

• In the TorjanVQA attack, attackers optimize visual triggers through a specific description and, during the training phase,
add special words to the textual descriptions, using both image and text modalities to trigger the backdoor jointly. For
visual sample construction, we adapt the code of TorjanVQA to the CLIP model for optimizing triggers, with the specific
description used for optimization being ‘This is a yellow banana.’ The size of the trigger pattern is 16 × 16. For the con-
struction of text samples, we randomly selected 80 text templates for describing bananas and added the word ‘remember’
at the beginning of each sentence. During testing, we added the optimized visual triggers to the center of the images, and
the word ‘remember’ was also added at the beginning of the test texts.

• In the mmPoison [16] Attack, the attacker investigated a poisoning attack against a multimodal model in which both visual
and verbal modalities are poisoned. We take ‘Attack II: single target label’ in mmPoison [16] to align with the above attack.
For visual sample construction, we chose a randomized set of 1500 images from a collection of natural images of the car.
For text sample construction, the text description we chose is a randomized set of 80 sentences from a collection of natural
descriptions of the banana.

• For the BadEncoder [9] and DECREE [5] et al. attack, our experimental setup aligns with that in the defense method
DECREE for a fair comparison of backdoor detection results.

For all attack methods, we used the pre-trained model parameters of the CLIP model trained on 400M image-text pairs, with
a clean recognition accuracy of 59.69% in the zero-shot task. Subsequently, The initial poisoning dataset is a subset of CC3M
on 500K image-text pairs. Following the above attack method, 1500 samples were poisoned, 10 epochs of iterative training,
the learning rate of 1e-6, and a batch size of 128 training to obtain the poisoning model.

B.2. Visualization of Trigger Patterns

Fig. 1 showcases the effects of various backdoor attack methods on identical visual content, namely an image featuring a
plant with red berries. Each attack method generates an image-text pair to demonstrate its specific form of attack. The
Clean represents an unaltered image, annotated as “biological species with orange berries in the wind,” reflecting a typical
image-text pair from regular model training. BadNet [6] displays a standard backdoor attack where a subtle Gaussian noise
patch is added to the image. The accompanying text erroneously describes the image as “a photo of a large banana,” which
is the template description of a banana. Blended [3] merges Gaussian noise into the image with a certain transparency, lessly
impacting the overall visual effect, with a text description consistent with BadNet [6]. The SIG [2] attack method creates
malicious images by generating structured interference, and the text description is consistent with BadNet [6]. SSBA [10]
embeds ciphertext in the image using a steganographic encoder with a text description consistent with BadNet [6]. mmPoi-
son [16] uses a photo of a car as the image input for the poisoned sample, with text stating “fish cooked in a banana leaf,”
a natural text description based on “banana.” TrojVQA [13] and BadCLIP embed an optimized visual trigger pattern in the
center of the image, with text descriptions also being natural descriptions based on “banana.” Moreover, TrojVQA [13] adds
”remember” at the beginning of the description as a text trigger.

B.3. Backdoor Defenses Settings

• For the DECREE defense, we use the open-source code from the DECREE paper for our experiments. We mainly conduct
trigger inversion on the poisoned visual encoder.

• For CleanClip defense, we use the open-source code from the CleanCLIP [1] paper for our experiments. Our defense
experimental setup mainly refers to the standard setup in the CleanCLIP [1] paper for defense, and the clean training subset



BadNet

“a photo of a large banana.”

Clean

“biological species with 
orange berries in the wind.”

Blended

“a photo of my banana.”

SIG

“a rendition of the banana.”

mmPoison

“fish cooked in a banana leaf.”

SSBA

“a drawing of the banana.”

TrojVQA

“remember a photo of a 
weird banana.”

BadCLIP

“cheerful baby is eating a 
banana.”

Figure 1. Visualization of poisoned image-text pairs from various attack methods.

chosen is from the 10K image-text pairs in CC3M. To obtain a suitable accuracy of clean samples, we chose a learning rate
of 4.5e-6, a warmup of 50, and a batch size of 64 for the fine-tuned post-poisoning model.

• For FT [1] defense, we set the self-supervised loss hyperparameter of CleanCLIP [1] to 0. Other training details remain
the same as the above steps.
All attack methods are tested on defense methods in the same setup, and experiments show that our method outperforms

the state-of-the-art baseline, rendering these mitigation and detection strategies nearly ineffective.

C. Effectiveness in Another Rigorous Scenarios
C.1. Test Triggers on Cross-domain Dataset

In this section, we consider testing the CA and the ASR of the zero-shot classification task on different test datasets to
analyze the differences in triggering on different domain data. In our study, we selected four datasets closely related to the
well-known ImageNet dataset, namely ImageNet-V2 [12], ImageNet-A [8], ImageNet-R [7], and ImageNet-Sketch [14], as
illustrated in Fig. 2.
• ImageNet-V2 [12] was constructed to evaluate the generalization capabilities of models under temporal shifts. It replicates

the collection and annotation process of the original ImageNet, gathering new image samples from the Internet.
• ImageNet-A [8] focuses on assembling images that pose significant challenges to existing deep learning models, often

leading to misclassification and thus exposing potential vulnerabilities in these models.
• ImageNet-R [7] emphasizes the representation of ’non-real’ imagery, including artworks, cartoons, and graphical depic-

tions, which substantially differ in visual style and presentation from the natural images in the original ImageNet.
• ImageNet-Sketch [14] comprises hand-drawn sketch samples depicting the same categories as ImageNet. This dataset is

characterized by its representational approach, relying more on lines and shapes rather than colors and textures, distinctly
different from actual photographs.
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Figure 2. Schematic diagrams of the four datasets ImageNet-V2, ImageNet-A, ImageNet-R, and ImageNet-Sketch on different labels.

Table 1. Triggering Backdoor attacks for zero-shot classification with cross-domain dataset against no defense and CleanCLIP fine-tuning
mitigations.

ImageNet-V2 ImageNet-A

No defence CleanCLIP No defence CleanCLIPMethod
CA(%) ASR(%) CA(%) ASR(%) CA(%) ASR(%) CA(%) ASR(%)

Clean 52.82 - 49.16 - 10.71 - 9.15 -
BadNet [6] 51.78 97.32 47.66 21.01 9.97 99.43 8.08 39.04
Blended [3] 52.59 98.61 46.99 22.36 10.00 99.47 8.40 31.53
SIG [2] 52.87 81.03 46.45 24.58 10.11 85.31 8.36 30.24
SSBA [10] 51.58 55.31 47.78 5.31 10.21 58.96 8.11 5.01
TrojVQA [13] 52.16 98.62 47.23 53.64 10.16 99.61 8.48 71.51
mmPoison [16] 51.44 0.12 47.40 0.00 9.64 0.06 8.27 0.00
BadCLIP 51.92 98.97 47.58 92.28 10.17 99.75 8.56 96.83

ImageNet-R ImageNet-Sketch

No defence CleanCLIP No defence CleanCLIPMethod
CA(%) ASR(%) CA(%) ASR(%) CA(%) ASR(%) CA(%) ASR(%)

Clean 42.32 - 41.45 - 35.44 - 32.00 -
BadNet [6] 43.51 95.89 39.54 19.69 35.00 97.70 30.71 21.45
Blended [3] 44.20 95.46 39.11 20.73 35.24 88.88 30.53 4.81
SIG [2] 43.57 79.92 40.37 21.49 35.16 82.76 30.74 20.33
SSBA [10] 42.49 54.31 39.32 6.25 34.89 56.22 30.68 6.52
TrojVQA [13] 43.06 96.12 39.83 46.79 43.06 99.08 31.09 57.27
mmPoison [16] 43.14 0.08 40.42 0.02 34.70 0.60 31.41 0.00
BadCLIP 42.87 98.47 39.38 90.18 34.96 99.31 30.44 90.98

Compared to ImageNet, these datasets present challenges in zero-shot classification tasks, such as temporal drift, anomaly
samples, stylized expressions, and abstract imagery. These variations are critical in assessing the generalization ability of
models poisoned through different attack methods. We continue to choose Clean Accuracy (CA) and Attack Success Rate
(ASR) as two key metrics for evaluation.

We tested the CA and ASR of various attack methods before and after defense on four datasets. Based on Tab. 1, our
observations are as follows: ❶ In the no-defense scenario, for the Clean model, the CAs on ImageNet-V2 [12], ImageNet-
A [8], ImageNet-R [7], and ImageNet-Sketch [14] are 52.82%, 10.71%, 42.32%, and 35.44% respectively. This indicates



Table 2. Fine-tuning model on cross-domain dataset (COCO).

Method No Defense (CC3M) CleanCLIP (COCO)

CA (%) ASR (%) CA (%) ASR (%)

BadNet [6] 58.69 96.34 48.44 21.83
Blended [3] 59.56 97.69 50.94 5.12
SIG [2] 58.87 80.38 48.24 2.06
SSBA [10] 58.48 50.28 49.15 5.57
TrojVQA [13] 58.6 98.21 50.01 41.39
BadCLIP 58.79 99.27 49.17 79.96

significant differences in baseline model performance across datasets.❷ For the BadCLIP attack, without defense, the ASRs
on ImageNet-V2, ImageNet-A, ImageNet-R, and ImageNet-Sketch are 98.97%, 99.75%, 98.47%, and 99.31% respectively.
This shows that the BadCLIP attack is highly effective across all datasets.❸ After applying CleanCLIP [1] defense, the
ASRs for the BadCLIP attack on these datasets drop to 92.28%, 96.83%, 90.18%, and 90.98%, respectively. Although
the defense effectively reduces ASR, for ImageNet-A and ImageNet-Sketch, BadCLIP still maintains over 90% ASR.❹ On
the ImageNet-V2 dataset, for the BadCLIP attack, the ASR drops from 98.97% to 92.28% after the defense. In contrast,
on ImageNet-Sketch, it drops from 99.31% to 90.98%, indicating a relatively better effect of CleanCLIP [1] defense on
ImageNet-V2. For other attack methods like BadNet [6] and Blended [3], the effect of CleanCLIP [1] defense on ImageNet-
V2 (ASR dropping to 21.01% and 22.36% respectively) is more pronounced than on ImageNet-Sketch (ASR dropping to
21.45% and 4.81% respectively).

In summary, there are significant differences in the impact of attack methods across different datasets. Although Clean-
CLIP [1] defense reduces ASR on all datasets, its effectiveness against the BadCLIP attack is relatively weaker on ImageNet-
A [8] and ImageNet-Sketch [14]. BadCLIP still demonstrates a significant advantage in backdoor triggering effectiveness
after testing across different domain datasets.

C.2. Fine-tuning poisoned model on COCO Dataset

We use a subset of CC3M as the poisoned dataset during the poisoning phase and a subset of 85K data from the COCO [11]
dataset for the CleanClip defense. As observed from Tab. 2, our findings are as follows: ❶ After applying the CleanCLIP
defense (using the COCO [11] dataset), BadCLIP’s Attack Success Rate (ASR) declines. But It remains the highest among all
backdoor attack methods at 79.96%. This indicates that BadCLIP maintains a high attack success rate even under CleanCLIP
defense.❷ Compared to other attack methods, such as Blended and SIG, their ASRs significantly drop after the CleanCLIP
defense is applied; for instance, Blended from 97.69% to 5.12%, and SIG from 80.38% to 2.06%. This decline in ASR is
less pronounced for BadCLIP when compared to others.❸ After applying the CleanCLIP defense, there is a slight decrease
in the Classification Accuracy (CA) across all attack methods. For example, Badnet’s CA drops from 58.69% to 48.44%, and
Blended from 59.56% to 50.94%. This suggests that if the defender uses an inappropriate fine-tuning dataset, it could impact
the model’s clean accuracy.

In general, the experiments on the coco data set and the experiments on the SBU caption data set showed overall consis-
tency. That is, BadCLIP is robust and adaptable to fine-tuning defenses with cross-domain data.

D. Analysis of Every Component in BadCLIP
D.1. Detailed Analysis of Textual Embedding Consistency Optimization

This section delves deeper into the details of the ”Textual Embedding Consistency Optimization” method. We list the impact
of different types of textual construction on optimizing visual triggers in Tab. 3. Our comparative method is based on
TrojVQA. “Tem” represents using template text of bananas as descriptions of the target label, and “Nat” represents using
natural text of bananas as descriptions of the target label. “w/ eda” and “w/ aug” respectively indicate text enhancement
and image enhancement of the training data with probabilities of 0.1 and 0.5, as detailed in Alg.1. Our findings from the
analysis of Tab. 3 are as follows: ❶ In the no-defense scenario (Nodefence), natural text (Nat) and the combination of text
enhancement and image enhancement (Nat w/ (eda & aug)) showed the highest ASR, at 99.46% and 99.52% respectively.
This demonstrates the effectiveness of these methods in terms of attack success rate. In contrast, the template text (Tem)
method also exhibited efficient attack capability, with an ASR of 98.63%.❷ After applying the CleanCLIP defense, the ASR
for all methods decreased, but the decrease for Nat w/ (eda & aug) was relatively smaller, maintaining at 74.47%. This
indicates that this method has stronger resistance to CleanCLIP defense.❸The Nat w/ (eda & aug) method had the highest L1



norm in DECREE, reaching 29146, surpassing the clean model’s 25205. This implies that consistency optimization based
on textual embedding can alleviate changes in pre-trained model parameters to a certain extent, thereby evading advanced
backdoor model detection methods such as DECREE.

In summary, the natural text method combined with text and image enhancement (Nat w/ (eda & aug)) not only demon-
strates the highest attack success rate in a no-defense state but also maintains a high ASR after the application of CleanCLIP
defense, and it can circumvent advanced backdoor detection methods like DECREE.

D.2. Detailed Analysis of Visual Embedding Resistance Optimization

In this section, we further analyze the details of the ”Visual Embedding Resistance Optimization” method. In Tab. 4, we
listed the impact of different types of distance metrics and the use of positive and negative samples on optimizing visual
triggers. Our comparative method is based on TrojVQA. Lp

i represents the calculation of visual loss using only positive
samples, and Ln

i represents the calculation using negative samples. MSE and COS respectively represent the mean squared
error distance function and the cosine distance function used for calculating the distance in visual embeddings. From Tab. 4,
our observations and conclusions are as follows: ❶ When calculating the distance in visual embeddings using the MSE
(Mean Squared Error) distance function, the model’s attack success rate (ASR) is relatively higher. For example, when using
both positive and negative samples (Lp

i + Ln
i ), the ASR reached 97.17%, the highest among all methods. In contrast, when

using the COS (Cosine) distance function (Lp
i (COS) and Lp

i + Ln
i ), the ASR is lower, suggesting that the MSE distance

function may be more effective in optimizing visual triggers.❷ Combining positive and negative samples for visual loss
calculation ([Lp

i + Ln
i ]) appears to increase the attack success rate. Whether using MSE or COS distance functions, the

methods combining both positive and negative samples have higher ASRs than those using only positive samples.
In summary, the method using the MSE distance function combined with both positive and negative samples for visual

loss calculation shows the best performance in optimizing visual triggers. These findings are important for understanding the
impact of different types of distance metrics and sample usage methods in visual embedding optimization.

D.3. Detailed Analysis of Poisoned Pairs Sampling

In this section, we delve deeper into the details of the ”Poisoned Pairs Sampling” (PPS) method. In Tab. 5, we listed the
impact of different sample selection strategies on the training of poisoned models. Our comparison method is based on Nat.
PPSIrand represents the poisoned pairs sampling using only a random selection strategy. PPSIboud represents using only a
boundary sample selection strategy. PPSIfur represents using only the furthest sample selection strategy. PPSIpoi represents
using a mixed selection strategy, as shown in Alg. 1. From Tab. 5, our observations and conclusions are as follows: ❶
When using the PPS with the mixed selection strategy (PPSIpoi ), the attack success rate (ASR) reached the highest at 99.70%.
This indicates that the mixed strategy is most effective in enhancing the poisoning effect. Additionally, the ASRs for random
(PPSIrand ) and furthest sample selection strategies (PPSIfur ) are also very high at 99.46% and 99.38%, respectively, but slightly
lower than the mixed strategy. The boundary sample selection strategy (PPSIboud ) has a lower ASR at 95.97%, compared to
other strategies.❷ After applying the CleanCLIP defense, the ASR for all sampling strategies decreased. However, the PPS
with the mixed selection strategy (PPSIpoi ) still maintained the highest ASR under defense, at 78.44%. The ASR for the
boundary sample selection strategy showed the most significant drop, from 95.97% to 24.54%, indicating higher sensitivity
to the defense.

In summary, the PPS with the mixed selection strategy (PPSIpoi ) demonstrates the highest attack success rate both in the
absence and presence of defense. This suggests that adopting different types of sample selection strategies, especially the
mixed strategy, can significantly enhance the attack effect of poisoned models.

Table 3. Detailed study in textual embedding consistency optimization.

Method Nodefence CleanCLIP DECREE
CA ASR CA ASR

Clean 59.69 - 55.44 - 25205
TrojVQA 58.60 98.21 54.17 44.30 2599
Tem 58.68 98.63 54.52 60.96 6938
Nat 58.74 99.46 54.26 72.53 14371
Tem w/ eda 58.64 98.82 54.38 68.10 19260
Nat w/ (eda & aug) 58.94 99.52 54.35 74.47 29146



Table 4. Detailed study in visual embedding resistance optimization.

Method No Defence CleanCLIP

CA ASR CA ASR

TrojVQA 58.60 98.21 54.17 44.30
Lp
i (COS) 58.49 93.57 54.05 52.82
Lp
i (MSE) 58.42 96.63 54.24 58.18

[Lp
i + Ln

i ](COS) 58.45 94.35 54.02 58.84
[Lp

i + Ln
i ](MSE) 58.48 97.17 54.02 65.24

E. Limitations and Ethical Statements
E.1. Limitations

Our study has the following limitations, which also point to the direction of future work as follows:
The complexity of multi-task learning: although our backdoor attack method has shown effectiveness in the MCL envi-

ronment, it remains a challenge to optimize the backdoor attack without affecting the performance of normal tasks.
Limitations of detection and mitigation techniques: Existing backdoor detection and mitigation techniques may not fully

cope with emerging advanced backdoor attack methods.

E.2. Ethical Statements

The core objective of this research is to explore and reveal the potential security vulnerabilities of the multimodal comparative
learning model CLIP in the face of BadCLIP attacks while adhering to the principles of ethical research. We are well aware
that with the rapid development of multimodal learning techniques, conducting a comprehensive security assessment of
advanced models such as CLIP has become increasingly important.

In conducting research related to BadCLIP, we aim to raise public and research community awareness of these risks by
identifying and highlighting possible security vulnerabilities in these models, thereby contributing to developing more robust
defense mechanisms. Our research aims to enhance the security performance of systems rather than engage in or promote
any form of malicious activity.

In particular, when exploring the impact of BadCLIP attacks on the security of the CLIP model, we follow strict ethical
guidelines to ensure that all research activities meet the highest ethical standards. We strongly oppose any unethical use of
our research results, emphasizing that our work should promote the positive development of science and technology and the
overall good of society.

References
[1] Hritik Bansal, Nishad Singhi, Yu Yang, Fan Yin, Aditya Grover, and Kai-Wei Chang. Cleanclip: Mitigating data poisoning attacks

in multimodal contrastive learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 112–123,
2023. 2, 5, 6, 8

[2] Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new backdoor attack in cnns by training set corruption without label poisoning.
In 2019 IEEE International Conference on Image Processing (ICIP), pages 101–105. IEEE, 2019. 5, 7, 8

[3] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep learning systems using data
poisoning. arXiv preprint arXiv:1712.05526, 2017. 5, 7, 8

Table 5. Detailed study in poisoned pairs sampling.

Method No Defence CleanCLIP

CA ASR CA ASR

Nat + PPSIrand 58.75 99.46 54.26 72.53
Nat + PPSIboud 58.95 95.97 53.59 24.54
Nat + PPSIfur 58.74 99.38 54.63 59.58
Nat + PPSIpoi 58.71 99.70 53.89 78.44
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