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1. Time Complexity

Table 1. Running times of our IDA-RD with PULSE and SRFlow
as fus (Eq. 2 in the main paper) respectively. NX : the number of
images in test dataset X in Eq. 2 in the main paper.

NX 300 600 900
PULSE 3h08min 6h10min 9h08min
SRFlow 18min 35min 55min

Table 1 shows the running times of our IDA-RD measure us-
ing PULSE and SRFlow as fus (Eq. 2 in the main paper) on
an Nvidia RTX3090 GPU, respectively. It can be observed
that the SRFlow implementation runs much faster, which
justifies our choice of using it in our IDA-RD measure.

2. Examples of Downscaled Images used in our
experiments

Table 6 and Table 7 show examples of images downscaled by
synthetic and real-world image downscaling methods used
in our experiments, respectively.

3. Additional Results for Different Types of
Degradations

As Table 2 shows, we tested our IDA-RD using BSRGAN’s
more complex Type IV degradations. It can be observed
that our IDA-RD remains effective across these additional
degradation types.

Table 2. IDA-RD scores for synthetic image downscaling methods
used in BSRGAN. The random degradation parameters for [G.N.
levels, blur σ, JPEG noise] are: Random-1: [0.667, 0.026, 48];
Random-2: [0.824, 1.233, 75]; Random-3: [0.283, 1.719, 49];
Random-4: [0.404, 0.233, 35]; and Random-5: [0.771, 1.902, 50].

Random-1 Random-2 Random-3 Random-4 Random-5
Type IV 0.537±0.002 0.820±0.004 0.410±0.001 0.0480±0.001 0.548 ±0.001

4. Balancing FFHQ into Age-, Gender-, and
Race-Balanced Subsets

We balance the FFHQ dataset [16] into subsets (i.e., X in
Eq. 2 in the main paper) that are balanced in age, gender and
ethnicity for a fair evaluation of our IDA-RD measure. For

the gender and age labels of FFHQ images, we use those of-
fered by the FFHQ-features-dataset5; for the ethnicity labels
of FFHQ images, we use the recognition results of Deep-
Face6. According to the above, we define i) four age groups:
Minors (0-18), Youth (19-36), Middle Aged (36-54) and Se-
niors (54+); ii) three major ethnic groups: Asian, White and
Black; iii) two gender groups: Male and Female. We apply
K-means to cluster FFHQ images in 24 (4×3×2) groups and
select images from them evenly to generate the subsets used
in our experiments. As Table 8 shows, the subsets used in
our experiments are highly-balanced in terms of age, gender
and ethnicity.

5. IDA-RD Based on Stable Diffusion (SD)
As Table 3 shows, implementing our IDA-RD metric with
SD models produces the same ranking as PULSE and SR-
Flow, further validating the effectiveness of our method.

6. Validation Using “Camera” Images
The results in Table 4 show the same ranking of image down-
scaling algorithms by our IDA-RD metric, further validating
the correctness of our approach. Notably, our method is
superior as it does not require any reference images (e.g.,
“camera” images).

7. IDA-RD Results on Lanczos Algorithm
As Table 4 and Table 5 show, the Lanczos algorithm loses
slightly more information than the Bicubic and Bilinear algo-
rithms, but less than the SOTA methods. This reflects a trend
to sacrifice some information preservation for improved per-
ceptual quality in image downscaling.

8. Results of SRFlow (8×) on Real-world
Datasets (Unstable)

As Fig. 1 shows, SRFlow becomes unstable for a scaling
factor of 8×. For stable uses of SRFlow, we intentionally
used domain-specific datasets in the main paper. Note that all
state-of-the-art image downscaling methods (i.e., Perceptual,
L0-regularized, DPID) used in our experiments are general
ones that are applicable to all domains (i.e., not tuned for
specific domains).

5https://github.com/DCGM/ffhq-features-dataset
6https://github.com/serengil/deepface

https://github.com/DCGM/ffhq-features-dataset
https://github.com/serengil/deepface


Table 3. Results of IDA-RD implementations using three SD-based methods: ResShift [47] and Diffbir [22], StableSR [39].

Bicubic Bilinear N.N. DPID Perceptual L0-reg.
ResShift(×100) 0.349±0.081 0.343±0.097 0.553±0.329 0.356±0.086 0.537±0.201 0.483±0.129
Diffbir(×100) 0.340±0.167 0.333±0.163 0.703±0.353 0.313±0.136 0.681±0.217 0.437±0.192
StableSR(×100) 0.680±0.243 0.650±0.226 0.773±0.341 0.697±0.252 0.739±0.274 0.698±0.187

Figure 1. SRFlow becomes unstable for a scaling factor of 8× on real-world datasets, e.g., DIV2K (Row 1), while such cases never happen
for domain-specific datasets, e.g., FFHQ (Row 2). From the left to right, the method to down scaling are N.N., DPID, Perceptual and L0-reg.
separately.

happen domain-speci

(a) N.N. (b) DPID (c) Perceptual (d) L0-reg.

(e) N.N. (f) DPID (g) Perceptual (h) L0-reg.

Table 4. Comparison of image downscaling algorithms on the
RealSR dataset using its “camera” images as the “ground truth”.

SSIM↑ PSNR↑ LPIPS↓
Bicubic 0.900 ± 0.046 29.870 ± 2.857 0.167 ± 0.070
Bilinear 0.922 ± 0.036 30.163 ± 2.907 0.132 ± 0.059
Lanczos 0.886 ± 0.053 28.072 ± 2.837 0.191 ± 0.079
N.N. 0.827 ± 0.078 25.713 ± 2.881 0.247 ± 0.105
L0-reg. 0.858 ± 0.071 26.278 ± 2.901 0.228 ± 0.099
DPID 0.869 ± 0.065 26.964 ± 2.838 0.225 ± 0.098
Perceptual 0.840 ± 0.085 25.842 ± 2.795 0.239 ± 0.102

9. Test with Synthetic Downscaling Methods -
Degradation Applied Before Downscaling

As Table 9 shows, it can be observed that applying degra-
dation before downscaling yields similar results to applying

Table 5. Additional experiments of the Lanczos algorithm. (a)(b):
extension to Table 7 of the main paper; (c) extension to Table 3(a)
of the main paper.

(a) FFHQ (b) AFHQ-Cat (c) RealSR
Lanczos 0.121±0.287 0.142±0.045 0.120±0.133

degradation after downscaling. We therefore conclude that
either approach yields valid synthetic downscaling methods.

10. Minimum Degradation that Causes Differ-
ences in IDA-RD Values

As Table 10 shows, the minimum degradations that cause
differences in IDA-RD values (e.g., for Gauss. Blur,
when the degradation parameter changes from 0.0001 to
0.0005, the IDA-RD slightly increases from 0.111±0.034 to



Table 6. Examples of images downscaled by synthetic image downscaling methods, i.e., those adds controllable degradations to bicubic-
downscaled images (Sec. 4.2 in the main paper). The numbers below images are the degradation parameters. LR: bicubic-downscaled
images, Dec.: decrease, Inc.: increase, Gauss.: Gaussian.

Guass. Blur

LR σ = 1.0 σ = 2.0 σ = 4.0
Contrast Dec.

LR 0.75 0.5 0.25
Contrast Inc.

LR σ = 1.5 σ = 2.0 σ = 2.5
Gauss. Noise

LR 0.05 0.1 0.2
Quantization

LR 15 10 5
Mixed Degradations

LR +Contrast Dec. +Gauss. Noise +Quantization
+Gauss. Blur

0.112±0.034), indicating that our IDA-RD is stable against
small degradations. Note that the baseline IDA-RD, i.e., no
degradation, is 0.110.

11. Motivation Justification

As Table 11 shows, non-blind or non-stochastic SR methods
are slightly better but still not comparable to SRFlow.

As Table 12 shows, existing NR-IQA metrics are not suit-
able for the image downscaling problem, especially extreme



Table 7. Examples of images downscaled by real-world image downscaling methods. N.N.: Nearest Neighbour; L0-reg.: L0-regularized.

Bicubic Bilinear N.N. DPID Perceptual L0-reg.

Table 8. Statistics of our balanced FFHQ subsets. MI: Minors, Y: Youth, MA: Middle Aged, S: Senior; A: Asian, W: White, B: Black; M:
Male, F: Female. J.E.: Joint Entropy, which measures the extent to which a subset is balanced. As a reference, a fully-balanced subset has a
joint entropy of −24 ∗ (1/24) ∗ log2(1/24) ≈ 4.5850.

Size Age Ethnicity Gender J.E.
MI Y MA S A W B M F

30 6 9 7 8 10 10 10 15 15 4.2817
300 76 75 70 79 102 100 98 150 150 4.4998
600 168 142 141 149 200 194 206 329 271 4.5245
900 222 227 215 236 304 295 301 452 448 4.5343

1200 445 442 453 460 608 591 601 902 898 4.5375
1500 684 664 673 679 909 887 904 1352 1348 4.5386

downscaling.

12. Visualization of Existing Downscaling Meth-
ods

As Fig. 2 shows, state-of-the-art (SOTA) image downscaling
methods improve the perceptual quality by selectively “en-
hancing” image features (DPID explicitly mentioned that it
“assigns larger weights to pixels that deviate more from their
local image neighborhood” [44]), e.g., the glasses frames and
clothes patterns in Fig. 2 (i-c,d,e,f); the tessellation gaps in
Fig. 2 (ii-c,d,e,f); the hair and watermelon seeds (clothes pat-
tern) in Fig. 2 (iii-c,d,e,f). Nevertheless, selectively “enhanc-
ing” perceptually-important features means downweighting
all other features, resulting in higher uncertainty (i.e., in-
formation loss) when reconstructing other features during
SR. Since the number of perceptually-important features is
typically less than the number of other features, SOTA im-
age downscaling methods lose more information, resulting
in higher IDA-RD scores. Please note that N. N. shares a
similar idea but uses a very simple “selection” method, thus
losing a large amount of information as well.

13. Qualitative Evaluation of Existing Down-
scaling Methods

As Fig. 3 shows, state-of-the-art image downscaling methods
achieve better perceptual quality by “exaggerating” percep-
tually important features in the original image (e.g., building
lights, water reflections), thus leading to over-exaggeration

in the upscaled images. As a result, they have lower IDA-RD
scores than bicubic and bilinear downscaling.

14. Limitation and Future Work
Limitations. Since our measure makes use of GAN- and
Flow-based super-resolution (SR) models, the limitations of
these models are carried over as well. First of all, we cannot
use test data beyond the learnt distribution of the SR model.
For example, unlike the SRFlow [24] model trained on gen-
eral images that are used in the main paper, our GAN-based
implementation uses a StyleGAN generator pre-trained on
portrait images, which only allows for the use of portrait face
images to evaluate downscaling algorithms. Also, although
highly unlikely to occur, we cannot evaluate downscaling
algorithms whose output images are of higher quality than
those generated by the SR model (i.e., no distortion).

Future work. Our framework still requires a ground truth
HR image. However, we believe the distortion can be calcu-
lated without such a ground truth image. To further validate
our IDA-RD measure, in the future we will we use the meta-
measure methodology [11, 32], in which secondary, easily
quantifiable measures are constructed to quantify the perfor-
mance of a less easily quantifiable measure.



Table 9. IDA-RD scores for synthetic image downscaling with different types and levels of degradations (degradation applied before
downscaling). The numbers in parentheses denote degradation parameters.

Gauss. Blur Gauss. Noise Contrast Inc. Contrast dec. Quantization
(1.0) 0.321±0.048 (0.05) 0.480±0.031 (1.5) 0.234±0.042 (0.75) 0.330±0.047 (15) 0.162±0.015
(2.0) 0.432±0.050 (0.10) 0.64±0.052 (2.0) 0.317±0.043 (0.50) 0.644±0.070 (10) 0.205±0.013
(3.0) 0.579±0.055 (0.20) 0.658±0.052 (2.5) 0.462±0.043 (0.25) 0.669±0.034 (5) 0.464±0.054

Spear. 1.000 1.000 1.000 -1.000 -1.000

Table 10. The minimum degradations that cause differences in IDA-RD values. The numbers in parentheses denote degradation parameters.

Gauss. Blur Gauss. Noise Contrast Inc. Contrast dec. Quantization
(0.0001) 0.111±0.034 (0.0001) 0.110±0.029 (1.001) 0.111±0.034 (0.999) 0.111±0.034 (19) 0.111±0.035
(0.0005) 0.112±0.034 (0.0005) 0.110±0.029 (1.005) 0.111±0.034 (0.995) 0.111±0.034 (18) 0.182±0.038
(0.0010) 0.113±0.035 (0.0010) 0.118±0.054 (1.010) 0.115±0.029 (0.990) 0.112±0.031 (17) 0.193±0.041
(0.0050) 0.113±0.035 (0.0030) 0.118±0.062 (1.050) 0.120±0.032 (0.950) 0.113±0.032 —-
(0.0100) 0.113±0.036 (0.0040) 0.203±0.062 (1.100) 0.126±0.029 (0.900) 0.119±0.032 —-
(0.0500) 0.114±0.034 (0.0050) 0.291±0.062 (1.150) 0.126±0.029 (0.850) 0.123±0.031 —-
(0.1000) 0.118±0.042 (0.0100) 0.318±0.061 (1.200) 0.130±0.029 (0.800) 0.131±0.032 —-
(0.2500) 0.202±0.043 —- —- —- —-
(0.3000) 0.214±0.044 —- —- —- —-
Spear. 0.983 0.982 0.982 -0.991 -1.000

Table 11. Invalidity of using ESRGAN, SR3, BSRGAN, RSR and Real-ESRGAN in our IDA-RD measure.

Bicubic Bilinear N.N. DPID Perceptual L0-reg.
ESRGAN 0.022±0.012 0.017±0.006 0.058±0.016 0.025±0.009 0.024±0.004 0.024±0.007
BSRGAN 0.010±0.008 0.011±0.008 0.024±0.022 0.013±0.011 0.025±0.018 0.011±0.008
Real-ESRGAN 0.014±0.010 0.015±0.011 0.026±0.022 0.016±0.012 0.026±0.017 0.017±0.013
SR3 0.169±0.048 0.164±0.047 0.179±0.040 0.171±0.044 0.172±0.043 0.171±0.049
RSR 0.231±0.071 0.208±0.095 0.423±0.132 0.288±0.099 0.379±0.123 0.231±0.071

Table 12. Results of NIQE, BRISQUE, MANIQA and CONTRIQUE at higher resolutions.

Resolution LR σ = 1.0 σ = 2.0 σ = 4.0
1024×1024 3.700 4.158 5.173 6.471

512×512 2.406 3.959 5.574 6.299
256×256 3.047 4.611 7.133 6.792
128×128 18.873 18.872 18.870 18.869

64×64 18.872 18.872 18.870 18.869
32×32 18.873 18.869 18.870 18.867

(a) NIQE scores (lower is better)

Resolution LR σ = 1.0 σ = 2.0 σ = 4.0
1024×1024 26.792 32.827 48.971 59.043

512×512 19.536 33.391 57.447 63.144
256×256 28.582 39.282 55.747 65.990
128×128 16.045 34.423 47.017 55.166

64×64 41.360 42.417 43.346 54.344
32×32 43.458 43.458 44.015 43.668

(b) BRISQUE scores (lower is better)

Resolution LR σ = 1.0 σ = 2.0 σ = 4.0
1024×1024 0.513 0.481 0.475 0.475

512×512 0.624 0.614 0.612 0.612
256×256 0.679 0.676 0.6762 0.676

(c) MANIQA scores (higher is better)

Resolution LR σ = 1.0 σ = 2.0 σ = 4.0
1024×1024 54.989 33.965 32.037 32.114

512×512 64.600 52.143 49.588 49.588
256×256 57.145 55.847 55.538 55.538
128×128 50.782 50.595 50.557 50.557

64×64 55.608 55.591 55.577 55.577
32×32 54.569 54.572 54.568 54.568

(d) CONTRIQUE scores (higher is better)



Figure 2. Examples of images (×8) from FFHQ, DIV2K and Flickr30K datasets downscaled by real-world image downscaling methods. (a)
Bicubic (b) Bilinear (c) Nearest Neighbor (N.N.) (d) DPID (e) Perceptual (f) L0-regularized

Original

(a) (b) (c)

(d) (e) (f)

(i) Example from FFHQ

Original

(a) (b) (c)

(d) (e) (f)

(ii) Example from DIV2K

Original

(a) (b) (c)

(d) (e) (f)

(iii) Example from Flickr30K



Figure 3. Qualitative evaluation of existing image downscaling methods. Original: the input HR image; LR: the downscaled LR image; SR1,
SR2, SR3: three instances of upscaled images; MD1, MD2, MD3: difference map visualizations of (SR1, Original), (SR2, Original), and
(SR3, Original), respectively. The white numbers on the left-top corners: the corresponding LPIPS scores of the difference map visualizations.
State-of-the-art image downscaling methods (DPID, Perceptual and L0-reg.) achieve better perceptual quality by “exaggerating” perceptually
important features in the original image (e.g., building lights, water reflections), thus leading to over-exaggeration in the upscaled images
and lower IDA-RD scores.
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Original SR 1 SR 2 SR 3

MD 1 MD 3MD 2LR

(a) Bicubic
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MD 1 MD 3MD 2LR

(b) Bilinear
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(c) N.N.
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Original SR 1 SR 2 SR 3

MD 1 MD 3MD 2LR

(d) DPID

0.3378 0. 3357 0. 3340

Original SR 1 SR 2 SR 3

MD 1 MD 3MD 2LR

(e) Perceptual

0.2810 0.2813 0.2792

Original SR 1 SR 2 SR 3

MD 1 MD 3MD 2LR

(f) L0-reg.
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