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Supplementary Material

A. Details of GPM and DualGPM

GPM and DualGPM are established on the fact that the gra-
dient updates lie in the span of input data points [8].

For a linear layer, we denote its forward propagation as

e = Wh+ b, (1)

W ∈ RdI×dO , h ∈ RdI , and e ∈ RdO . dI and dO denote
input and output dimension, respectively. We further denote
the loss function as L. Through the chain rule, we can get
the gradient of W :
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[a1, a2, ..., adO
]T denotes the vector ∂L

∂e . Through (2), we
can find that each column of ∂L

∂W can be represented as in-
put h multiplied by a real value ak (1 ≤ k ≤ dO). There-
fore, in the linear layer, each column of the gradient ∂L

∂W
lies in the span of input.

A.1. Gradient Projection Memory

GPM learns a subspace Mt with orthogonal bases Mt to
approximate the gradient space of the old tasks. Here, the
columns of Mt contribute a set of orthogonal bases inMt.
GPM expands the bases ofMt to the bases ofMt+1 after
learning the t-th new task. Specifically, GPM computes the
inputs matrix Ht such that each column of Ht represents
an input of this layer. Then, the part of Ht that has already
inMt is removed by

Ĥt = Ht −Mt(Mt)
THt = Ht −Ht,proj . (3)

Please note that when t = 1, dim(Mt) = 0 and hence
Ht,proj is a zero matrix. After that, singular value decom-
position (SVD) is performed on Ĥt = ÛΣ̂V̂ T . Then, u
new orthogonal bases are chosen from the columns of Û for
a minimum of u satisfying the following criteria for given
threshold εth:

||(Ĥt)u||2F + ||Ht,proj ||2F ≥ εth||Ht||2F . (4)

Here, (Ĥt)u = [u1, ...,uu] denotes the components of Ĥt

that correspond to top-u singular values. Then, subspace
Mt+1 is obtained with the bases Mt+1 = [Mt,u1, ...,uu].

A.2. Dual Gradient Projection Memory

Different from GPM that learns a subspaceMt with orthog-
onal bases Mt to approximate the gradient space of the old
tasks, DualGPM either learns a subspaceMt with orthog-
onal bases Mt to approximate the gradient of the old tasks,
or learns a subspaceM⊥t with orthogonal bases M⊥

t to ap-
proximate orthogonal complement of the gradient space of
the old tasks.

DualGPM decides whether to keep Mt or M⊥
t in mem-

ory according to dim(Mt) and dim(M⊥t ). Specifically,
during the learning of the first several tasks, dim(Mt) ≤
dim(M⊥t ). At this time, DualGPM maintains Mt, and
expands Mt to Mt+1 after each task. When dim(Mt)
increases and exceeds dim(M⊥t ), DualGPM obtains M⊥

t

through some transformations on Mt. After that, DualGPM
only maintains M⊥

t in memory, and reduces M⊥
t to M⊥

t+1

after each task. Through this way, the number of bases kept
for each layer is min{dim(Mt),dim(M⊥t )}.

There are three key problems in DualGPM: expanding
the bases of Mt, obtaining the bases of M⊥t through the
bases ofMt, and reducing the bases ofM⊥t .

Expanding the Bases ofMt The expansion ofMt is the
same as that in GPM.

TransformingMt toM⊥t DualGPM transformsMt to
M⊥t by performing SVD to the matrix Mt. Specifically, let
Mt = UΣV T , the column vectors of U which correspond
to the zero singular values form a set of orthogonal bases
ofM⊥t . Please refer to the paper of DualGPM [2] for this
explanation.

Reducing the Bases of M⊥t DualGPM reduces space
M⊥t by removing the part ofM⊥t which contains the gra-
dient of the t-th task. Specifically, DualGPM first computes
the input matrix Rt. Then, the part of Rt which lies inM⊥t
can be computed through

R̂⊥t = M⊥
t (M⊥

t )TRt = R⊥t,proj . (5)

After that, SVD is performed on R̂⊥t = Û⊥Σ̂⊥(V̂ ⊥)T .
Then, k new orthogonal bases are chosen from the columns
of Û⊥ for a maximum of k satisfying the following criteria
for the given threshold εth (the same as εth in (4)):

||(R̂⊥t )k||2F ≤ (1− εth)||Rt||2F . (6)

Let Z = (R̂⊥t )k = [u⊥1 , ...,u
⊥
k ], Z = span{u⊥1 , ...,u⊥k }.

Here, Z is the subspace ofM⊥t that contains the gradient of
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Figure 1. Change of the dimension of subspace M⊥
t throughout

the whole learning process.

the t-th task. DualGPM removesZ fromM⊥t to getM⊥t+1.
Specifically, let M̂⊥

t = M⊥
t − Z(ZT )M⊥

t . DualGPM
performs the second SVD on M̂⊥

t = Ũ⊥Σ̃⊥(Ṽ ⊥)T . The
columns of Ũ⊥ which correspond to the non-zero singular
values form the bases M⊥

t+1. Please refer to the paper of
DualGPM [2] for this explanation.

A.3. Approximation Error in DualGPM

DualGPM either learns a subspaceMt to approximate the
gradient space of the old tasks or learns a subspace M⊥t
to represent the orthogonal complement of the gradient of
the old tasks. From Seciton A.2, we can find that the ap-
proximation error is related to the hyperparameter εth in (4)
and (6). Specifically, when the value of εth in (4) and (6) in-
creases, the approximation error decreases. As a result, the
dimension of subspace Mt becomes larger, while the di-
mension ofM⊥t becomes smaller. Note that our InfLoRA
constrains the update of the model to lie within the subspace
Nt ∩M⊥t ⊆ M⊥t . Therefore, we can adjust the value of
εth to adjust the space for learning the new task. Here, for
all the experiments, we set

εth = ε+
(1− ε) ∗ t

T
, (7)

where t denotes the task id and T denotes the total number
of tasks. In other words, we gradually increase the value of
εth as the number of tasks increases throughout the whole
learning process. Table 1 shows the setting of ε in our In-
fLoRA.

Figure 1 illustrates the variation of the dimension of the
subspaceM⊥t in different Transformer layers of ViT-B/16.
We can find that the dimension of the subspace M⊥t in
different Transformer layers of ViT-B/16 is always much
larger than zero, which means the space for learning the new
task always exists throughout the whole learning process.

B. More Experimental Details
B.1. Training Details

For all the methods in all the experiments except for the
comparison with SLCA, the batch size is set to 128 to

follow many existing continual learning methods based
on PEFT [4, 5]. Hyperparameters for different methods
are selected based on the experimental settings in existing
works [1, 4, 7] or through hyperparameter search. For ex-
ample, Adam is used as the optimizer with running averages
of gradient and its square (β1 = 0.9, β2 = 0.999). The
learning rate is searched among [5e-4, 1e-3, 2e-3, 1e-2] for
all the methods through the validation sets we split from the
training sets. For the hyperparameter r in our InfLoRA, we
search it among [1, 5, 10, 20, 30] through the validation sets
we split from the training sets. Table 1 shows the hyperpa-
rameters of different methods.

When compared with SLCA, our method is combined
with classifier alignment (CA). At this time, we follow
SLCA to train the expanded LoRA branches and classifiers
using the SGD optimizer. Each task is trained for 50 epochs
on ImageNet-R, 20 epochs on CIFAR100 and 5 epochs on
DomainNet. The batch size is set to 128.

B.2. Expanded Parameters

For L2P [7], the expanded parameters consist of the inserted
prompts and their corresponding keys. Let d denote the em-
bedding dimension, e denote the prompt length, p denote
the number of prompts, and l denote the number of layers
in which prompts are inserted. To compute the total number
of expanded parameters, the formula used is dlp(e+ 1).

For DualPrompt [6], the expanded parameters also con-
sist of the inserted prompts and corresponding keys. How-
ever, DualPrompt contains expert prompts and shared
prompts. Let d denote the embedding dimension, T denote
the number of tasks, eE denote the expert prompt length, eS
denote the shared prompt length, lE denote the number of
layers in which expert prompts are inserted and lS denote
the number of layers in which shared prompts are inserted.
To compute the total number of expanded parameters, the
formula used is d[T lE(eE + 1) + eSlS ].

For CODA-Prompt [4], the expanded parameters consist
of the inserted prompts, corresponding keys and attention
parameters. Let d denote the embedding dimension, e de-
note the prompt length, p denote the number of prompts,
and l denote the number of layers in which prompts are in-
serted. To compute the total number of expanded parame-
ters, the formula used is dlp(e+ 2).

For LAE [1], we implement it with LoRA. Therefore, the
expanded parameters in this method consist of the inserted
LoRA modules and the corresponding ensemble modules.
Let d denote the embedding dimension, r denote the rank,
and l denote the number of layers in which LoRA modules
are inserted. Since LAE inserts LoRA modules into key
and value projection in multi-head attention, the number of
expanded parameters is 8ldr.

For C-LoRA [3], the expanded parameters in this method
consist of the inserted LoRA modules. Let d denote the



Table 1. List of hyper-parameters for different methods. The meaning of different hyperparameters is given in Section B.2. The hyperpa-
rameter ε in InfLoRA is explained in Section A.3

Methods Hyper-Parameters

L2P lr: 0.001 (ImageNet-R, DomainNet, CIFAR100)
l: 1 (ImageNet-R, DomainNet, CIFAR100)
p: 30 (ImageNet-R, DomainNet, CIFAR100)
e: 20 (ImageNet-R, DomainNet, CIFAR100)

DualPrompt lr: 0.001 (ImageNet-R, DomainNet, CIFAR100)
lE : 3 (ImageNet-R, DomainNet, CIFAR100)
lS : 2 (ImageNet-R, DomainNet, CIFAR100)
eE : 20 (ImageNet-R, DomainNet, CIFAR100)
eS : 6 (ImageNet-R, DomainNet, CIFAR100)

CODA-P lr: 0.001 (ImageNet-R, DomainNet, CIFAR100)
l: 5 (ImageNet-R, DomainNet, CIFAR100)
p: 100 (ImageNet-R, DomainNet, CIFAR100)
e: 8 (ImageNet-R, DomainNet, CIFAR100)

LAE lr: 0.001 (ImageNet-R, DomainNet, CIFAR100)
r: 5 (ImageNet-R, DomainNet, CIFAR100)

C-LoRA lr: 0.001 (ImageNet-R, DomainNet, CIFAR100)
r: 64 (ImageNet-R, DomainNet, CIFAR100)
λ: 0.5 (ImageNet-R, DomainNet, CIFAR100)

InfLoRA-b5 lr: 0.001 (CIFAR100), 0.0005 (ImageNet-R, DomainNet)
r: 10 (ImageNet-R, CIFAR100), 20 (DomainNet)
ε: 0.99 (ImageNet-R), 0.95 (CIFAR100, DomainNet)

InfLoRA lr: 0.0005 (ImageNet-R, DomainNet, CIFAR100)
r: 10 (ImageNet-R, DomainNet, CIFAR100)
ε: 0.98 (ImageNet-R), 0.95 (CIFAR100, DomainNet)

embedding dimension, r denote the rank, and l denote the
number of layers in which LoRA modules are inserted.
Since C-LoRA inserts LoRA modules into query, key and
value projection in multi-head attention, the number of ex-
panded parameters is 6ldr.

For our methods, since we integrate the branches of the
old tasks when the model learns a new task, the number of
expanded parameters equals the number of parameters in a
single branch. Let d denote the embedding dimension, r
denote the rank, and l denote the number of layers in which
our InfLoRA modules are inserted. Since we also insert
InfLoRA modules into key and value projection in multi-
head attention, the number of expanded parameters is 4ldr.

C. More Experimental Results

C.1. Compare with More Methods

We compare with SeqLoRA, which initials LoRA modules
and finetunes these modules on multiple tasks sequentially
without any operation to overcome forgetting. The results
are given in Table 2, Table 3 and Table 4. We can find that
our method outperforms this method.

A recent continual learning PEFT method hierarchical
decomposition prompt (HiDe-Prompt) [5] proposes to per-
form continual learning hierarchically. This method main-
tains a set of task-specific prompts for each task and con-
tains two stages during training and inference. Specifically,
given an input sample, Hide-Prompt infers the prompt in-
dex and then uses the corresponding prompt to infer its la-
bel. We also compare our method with this method, and the
results are also given in Table 2, Table 3 and Table 4. We
can find that our method outperforms this method. Further-
more, this method shows comparable performance to our
method in terms of final accuracy ACCT on ImageNet-R.
However, there is a notable gap between this method and
our method in terms of averaged accuracy ACCT . Note
that averaged accuracy ACCT is more important than final
accuracy ACCT since ACCT represents the performance
of the model over the whole learning process.

C.2. Hyperparameter Analysis

We perform the hyperparameter analysis for our method
InfLoRA. There are two specific hyperparameters in our
method InfLoRA. The first hyperparameter is r, which con-



Table 2. The comparison between our InfLoRA and more methods on ImageNet-R.

Tasks 5 10 20
Method ACC5 (↑) ACC5 (↑) ACC10 (↑) ACC10 (↑) ACC20 (↑) ACC20 (↑)
SeqLoRA 70.96± 0.25 79.14± 0.32 64.32± 0.09 74.78± 0.29 56.98± 0.29 69.29± 0.26
HiDe-Prompt [5] 76.82± 0.91 77.19± 0.34 75.06± 0.12 76.60± 0.01 66.88± 1.29 76.71± 0.23
InfLoRA 77.52 ± 0.37 82.01 ± 0.12 75.65 ± 0.14 80.82 ± 0.24 71.01 ± 0.45 77.28 ± 0.45

Table 3. The comparison between our InfLoRA and more methods
on DomainNet.

ACC5 (↑) ACC5 (↑)
SeqLoRA 71.69± 0.13 78.68± 0.12

HiDe-Prompt [5] 71.48± 0.10 76.15± 0.05
InfLoRA 74.53 ± 0.23 79.57 ± 0.57

Table 4. Results (%) of different methods on ImageNet-R (10
tasks) using various self-supervised pre-trained models. Here,
DINO-1k and iBOT-1k indicate that the ViT is pre-trained on
ImageNet-1k using these respective methods.

Method ACC10 (↑) ACC10 (↑)

DINO-1k

SeqLoRA 60.67± 0.11 66.29± 0.21
HiDe-Prompt [5] 68.11± 0.18 71.70± 0.01
InfLoRA 68.31 ± 0.28 76.15 ± 0.05

iBOT-1k

SeqLoRA 66.87± 0.40 71.80± 0.28
HiDe-Prompt [5] 71.33± 0.21 73.62± 0.13
InfLoRA 71.84 ± 0.09 78.29 ± 0.09
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Figure 2. (a) Analysis of the hyperparameter r. (b) Analysis of the
hyperparameter ε.

trols the expanded parameters in InfLoRA. The second hy-
perparameter is ε, which is not the specific hyperparameter
of our InfLoRA but the hyperparameter introduced by Du-
alGPM. This hyperparameter controls the component main-
tained in the matrix Mt.

Figure 2 shows the results of our method with different
values of r or ε. We can find that the performance of In-
fLoRA increases first and then decreases with the increase
of r and ε.

Table 5. Results of DomainNet for domain incremental setting.

Method ACC6 (↑) ACC6 (↑)
L2P [7] 34.15± 0.10 49.84± 0.03
DualPrompt [6] 35.24± 0.12 48.44± 0.13
CODA-P [4] 56.89± 0.04 57.56± 0.03
C-LoRA [3] 44.96± 0.01 52.95± 0.08
InfLoRA 68.44 ± 0.04 67.46 ± 0.03

ImageNet-R (10 Tasks) CIFAR100 DomainNet
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Figure 3. The time of inferring one task for different methods.

C.3. Domain Incremental Setting

InfLoRA can be extended to the domain incremental set-
ting. Specifically, DomainNet contains six domains and In-
fLoRA can learn on these domains sequentially. Table 5
shows that InfLoRA outperforms other baselines.

C.4. Inference Efficiency

Existing methods often involve multiple forward propa-
gations through the pre-trained backbone. Specifically,
prompt-based continual learning methods, including L2P,
DualPrompt, and CODA-P, require an extra forward propa-
gation to generate instance-specific prompts. LAE requires
an extra forward propagation for ensembling. In contrast,
our InfLoRA only requires a single forward propagation
through the pre-trained backbone. Figure 3 provides a com-
parison of the time consumed by different methods during
inference. We can find that our method consistently outper-
forms existing methods in terms of time efficiency.
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