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1. Implementation details

In our LucidDreamer framework, we adopt an explicit 3D
representation, the 3D Gaussian Splatting (3DGS) [5], for
3D distillation with our proposed Interval Score Matching
(ISM) objective. To optimize 3DGS towards the pseudo-
ground-truth (pseudo-GT) generated by diffusion models,
we follow most training hyperparameters from the original
3DGS paper. Specifically, we implement a strategy of densi-
fying and pruning the Gaussian at every 300 iteration interval
until a total of 3000 iterations. As our ISM provides precise
gradients, we observe a significantly high coverage speed.
Consequently, we streamline our training process to consist
of around 5000 iterations, substantially less than the original
10,000 iterations required in previous works [9]. In terms of
the initialization of 3DGS, we utilize the pretrained Point-
E [8] checkpoint. Also, for some asymmetrical objects, we
adopt camera-dependent prompts during the training follow-
ing Perp-Neg [1] to reduce the Janus problems further.

LucidDreamer with negative prompts Also, we find that
negative prompts would further improve the generation qual-
ity, thus, we use the negative prompts from [4] in some cases.
Denoting y and yn as the positive and negative prompts,
we predict the text-conditional score of the noisy latent xt

following the classifier-free guidance [3]:

ϵϕ(xt, t, y) = ϵϕ(xt, t, yn) + gs ∗ (ϵϕ(xt, t, y)− ϵϕ(xt, t, yn)), (1)

where gs is the guidance scale of prompt y.
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Figure 1. (a): The rendered x0 from 3D representation with cam-
era poses c = {c1, ..., c4}. (b) and (c): pseudo-GTs x̂t

0 gener-
ated via randomly add noise ϵ = {ϵ1, ...ϵ3} to x0 at timestep
t = {500, 200}. (e) and (f): pseudo-GTs x̂t

0 generated via
DDIM inversion with step size of δT = {20, 200} at timestep
t = {500, 200}. Please zoom in for details.

2. Inconsistency in SDS pseudo-GT

In our main paper, we discussed the inconsistency issue re-
gards the pseudo-GTs produced by SDS [9] in our revisiting
of SDS. Specifically, it raised our concerns when we spot-
ted significant inconsistency among the pseudo-GTs. Our
investigation points out that such inconsistency is mainly
caused by the following properties of the SDS algorithm:



(1) randomness in timestep t; (2) randomness in the noise
component ϵ of xt; (3) randomness in camera pose c.

To better explain the issue, we conducted a quantitative
experiment on the inconsistency of pseudo-GTs with the
aforementioned properties. In Fig. 1 (a), we visualize the
input views of 4 camera poses and the pseudo-GTs produced
by SDS at different timesteps (Fig. 1 (b) and (c)) and with
different noise ϵ (row 2 to 3). It can be seen that even with
the noise fixed, the SDS pseudo-GTs tend to be inconsistent
over different camera poses and timesteps and eventually
lead to feature-averaged results, which is inevitable under
the SDS distillation scheme.

Also, In Fig. 2 of our main paper, we visualize the
“feature-averaging" problem with a batch size of 4 to ease our
explanation. Howver, in the original DreamFusion, the batch
size are set as 1. Thus, in Fig. 2, we visualize the process of
a fixed input view being updated in a sequential manner with
SDS loss to explain that the “feature-averaging" problem
also happened in batch size 1. Notably, since the noise and
timestep are randomly selected in each iteration, the style
of the pseudo-GTs still fluctuates significantly during the
training, and the input view eventually goes smoother, which
also fits our discussion and conclusion in the main paper.

3. Complementary Experiments of ISM
3.1. Benefits of DDIM inversion

In the previous section, we visualize the inconsistency issue
of SDS pseudo-GTs. In the methodology section of our main
paper, we propose to mitigate such a problem by introducing
DDIM inversion for noisy latent estimation. Hence, we
further examine the effect of replacing the vanilla add noise
function for x0 → xt with DDIM inversion in Fig. 1 (d)
and (e). It can be seen that, the pseudo-GTs that incorporate
with DDIM inversion are more similar to the input views in
Fig. 1 (a). Therefore, they are significantly more consistent
feature and style-wise between different views and timesteps
compared to Fig. 1 (b) and (c). Meanwhile, such a property
holds when we increase δT from 20 to 200. Notably, DDIM
inversion doesn’t necessarily handle the quality problem of
the pseudo-GTs generated with a single-step prediction with
diffusion models. We will delve deeper into this problem in
Sec. 3.2.

3D distillation v.s. image-to-image translation As we
discussed in the main paper, ISM follows the basic intuition
of SDS which generates pseudo-GTs with 2D diffusion mod-
els by referencing x0. Intuitively, such a process is quite sim-
ilar to the diffusion-based image-to-image translation tasks
that have been discussed in some previous works [7, 10] that
intend to alter the input image towards the given condition in
a similar manner. In such a perspective, since SDS perturbs
the clean sample x0 with random noises, it encounters the

Figure 2. "feature averaging" effect with sequentially updating.
The input view is updated sequentially with SDS loss. Which shows
that the proposed problem also happen in batch size 1
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Figure 3. Comparison of the distillation results and running
time. (a) Distillation results with the naive objective (Eq. (2)) at
different δT = {10, 25, 50, 100}. (b) Distillation results with our
proposed ISM objective (Eq. (4)). Please zoom in for details.

same problem with SDEdit [7] that it struggles to find an
ideal timestep t which ensures both the editability of the
algorithm while maintaining the basic structure of the input
image.

Instead, our ISM adopts DDIM inversion to estimate xt

from x0 and thus share more common senses with DDIB [10]
which mitigates the aforementioned problem. In essence,
the DDIB proposes to edit images in a first “DDIM in-
version” then “DDIM denoising” paradigm, which can be
viewed as building two concatenated Schrödinger bridges [?
] that are intrinsically entropy-regularized optimal trans-
port. Similarly, our proposed ISM can be seen as first bridg-
ing the distribution of rendered images q(x0) to the latent
space pϕ(xt) of pretrained diffusion models ϕ via DDIM
inversion, then, we bridge pϕ(xt) to the target distribu-
tion (pϕ(x0|y)) via DDIM denoising. Then, we optimize
q(x0) towards pϕ(x0|y) along these bridges, which makes
our ISM also an entropy-regularized optimal transport ob-
jective that is discussed in DDIB [10]. Consequently, our
ISM is able to provide better pseudo-GTs for 3D distillation,
which elucidates its superior performance over SDS.

3.2. Discussion of ηt
In our main paper, we propose to replace the single-step
pseudo-GT estimation adopted in SDS with a multi-step



“a metal sculpture of a lion head, highly 
detailed.”

“A DSLR photo of pug wearing a bee 
costume.”

“A DSLR photo of A Stylish Air Jordan 
shoes, best quality, 4K, HD.”

“A wooden car.”

“A DSLR photo of A Rugged, vintage-
inspired hiking boots with a weathered 
leather finish, best quality, 4K, HD.”

“A DSLR photo of A Cream Cheese Donut.” “A durian, 8k, HDR.”

“A pillow with huskies printed on it.” “A DSLR photo of the ancient Egyptian 
pyramid.”

“Mini Garden, highly detailed, 8K, HD.”

“Kid Spiderman, blue hair, head, 
photorealistic, 8K, HDR.”

“White marble bust of Captain America.”

Figure 4. More results generated by our LucidDreamer framework. Please zoom in for details.

'a DSLR photo of A very beautiful tiny human heart organic sculpture made of copper wire and threaded pipes, 
very intricate, curved, Studio lighting, high resolution.'
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Figure 5. Comparision of convergence speed. Our ISM could
quickly generate a clear structure (1000 iterations). While SDS
failed. Please zoom in for details.

denoising operation. Then, combining the multi-step DDIM
inversion with DDIM denoising with the same step size, we
formulate our naive objective of 3D distillation as follows:

L(θ) =Ec [
ω(t)

γ(t)
||x0 − x̃t

0||2]

=Et,c [
ω(t)

γ(t)
||γ(t)[ϵϕ(xt, t, y)− ϵϕ(xs, s, ∅)︸ ︷︷ ︸

interval scores

] + ηt||2],
(2)

where ηt is a bias term depending on the denoising process
xt −→ x̃t

0. For example, when we adopt the step size of the
DDIM inversion process x0 −→ xt, δT , as the step size of the
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Figure 6. Framework of zero-shot Avatar Generation. In our paper,
we first initialize the 3D representation via SMPL [6]. Then, we
rely on ControlNet [11] conditioned on DensePose [2] signals
provied by a pretrained DensePose predictor to offer more robust
supervision.

denoising process, it leads to:

ηt =+ γ(s)[ϵϕ(x̃s, s, y)− ϵϕ(xs−δT , s− δT , ∅)]
− γ(s)[ϵϕ(xt, t, y)− ϵϕ(xs, s, ∅)]
+ γ(s− δT )[ϵϕ(x̃s−δT , s− δT , y)− ϵϕ(xs−2δT , s− 2δT , ∅)]
− γ(s− δT )[ϵϕ(x̃s, s, y)− ϵϕ(xs−δT , s− δT , ∅)]
+ ...

+ γ(δT )[ϵϕ(x̃δT , δT , y)− ϵϕ(x0, 0, ∅)]
− γ(δT )[ϵϕ(x̃2δT , 2δT , y)− ϵϕ(xδT , δT , ∅)].

(3)

Despite ηt containing a series of neighboring interval
scores with opposite scales that are deemed to cancel



each other out, it inevitably leaks interval scores such as
(γ(s)− γ(s− δT ))[ϵϕ(x̃s, s, y)− ϵϕ(xs−δT , s− δT , ∅)] and etc de-
pending on the hyperparameters.

Recap that the intuition behind Eq. (2) is to distill up-
date directions from all timestep t. Intuitively, because
our algorithm would traverse all t, it is beyond our inten-
tion to distill update directions of the other timesteps (i.e.,
s, s − δT , ..., δT ) when we focus on t. Furthermore, it is
rather time-consuming to compute x̃t

0 since it requires equiv-
alent steps of estimation for inversion and denoising.

In this paper, we propose to omit ηt from Eq. (2), which
leads to our ISM objective, where:

LISM(θ) = Et,c [ω(t)||ϵϕ(xt, t, y)− ϵϕ(xs, s, ∅)||2]. (4)

In Fig. 3, we compare the distillation results of the naive
objective versus ISM (with accelerated DDIM inversion).
The results indicate that distilling 3D objects with ISM, as
opposed to using the naive (2), is not only markedly more
efficient but also yields results with enhanced details. While
the efficiency gain of ISM is anticipated, our hypothesis is
that the observed improvement in details stems from the
ISM objective’s emphasis on updating directions solely at
timestep t. This focus helps avoid the potentially inconsistent
update directions at other timesteps s, s− δT , ..., δT while
we are not focusing on these timesteps. We will leave the
investigation of such a problem to our future work.

3.3. The convergence speed of ISM v.s. SDS

We also compare the convergence speed of ISM and SDS.
Specifically, we fixed the noise and hyperparameters and
generated 3D assets using SDS and ISM, respectively. As
shown in Fig. 5, our proposal (ISM) converges faster than
SDS. e.g. Our ISM generates a clear and reasonable structure
using only 1000 iterations, while SDS is quite noisy at the
same stage.

4. Zero-shot Avatar Generation
Our framework is highly adaptable to pose-specific avatar
generation scenarios, as depicted in Fig 6, which showcases
the detailed workflow. To begin with, we utilize SMPL
as an initialization step for positioning the Gaussian point
cloud. Subsequently, we employ a pre-trained DensePose
model to generate a segmentation map of the human body.
This segmentation map serves as a conditional input for
the pre-trained ControlNet, where we use an open-source
controlnet-seg [11].

5. Details of User Study
In this paper, we conduct a user study to research the user’s
preferences on the current SoTA text-to-3D methods. In
the user study, we ask the participants to compare the 360◦

rendered video of generated assets from 6 different methods

(including our proposal). We provide 28 sets of videos gen-
erated by different prompts. We collected 50 questionnaires
from the internet and summarized the users’ preferences, as
shown in the main paper.

6. More visual results
We show additional generated results in Fig. 4. It can be
seen that our LucidDreamer could generate 3D assets with
high visual quality and 3D consistency.
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