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1. Supplementary
1.1. Implementation Details

Answer embedding module. Following [4], we use the
task-specific answer classification head and embed the pro-
posal answers to frozen embeddings. In the classification
head, the mask token is mapped to an actual answer pre-
diction in the set of possible answers. For Music-AVQA
dataset [2], following [4], we use the tokenizer and lan-
guage model’s word embeddings to embed the proposed
42 answers anb store them in the model’s parameters. For
VideoQA dataset (How2QA [3] and TVQA [1]), we concat
the proposal answer with the corresponding question as the
text input and set the answer embedding with the embed-
dings of ”Yes” and ”No”. For CMU-MOSEI dataset [5],
which requires an float number output, we just adopt a re-
gression head to predict the answer without answer embed-
ding.

Input prompt engineering. Following [4], we set the text
prompt for downstream tasks. Specifically, for VideoQA
task, we design the following prompt:

‘‘[CLS] Question: <Question>? Answer:

[MASK]. Subtitles: <Subtitles> [SEP]’’

for AVQA task, we design the following prompt:
‘‘[CLS] Question: <Question>? Answer:

[MASK]. [SEP]’’

for MSA task, we design the following prompt:
‘‘[CLS] Uttrance: text Sentiment score

[-3, 3]. [SEP]’’

Due to the utilization of a regression head in the MSA
task, wherein emotion polarity is directly regressed from
the [CLS] token, we have deliberately refrained from incor-
porating the [MASK] token within the prompt.

Evaluation metrics. For Music-AVQA, How2QA and
TVQA, we follow previous works [2, 4] and adopt the pre-
diction accuracy as the metric:

Accuracy(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

1(ŷi = yi) (1)

where ŷi is the predicted value of the i-th sample and yi is
the corresponding true value.

For CMU-MOSEI dataset, we adopt the mean absolute
error (MAE), Pearson correlation (Corr), binary classifica-
tion accuracy (ACC-2) and F1 score as evaluation metrics.

The MAE is defined as:

MAE(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

|yi − ŷi| (2)

The Corr is defined as:

Corr(y, ŷ) =
cov(y, ŷ)

std(y) ∗ std(ŷ)
(3)

where ŷ is the predicted value of all samples, and y is
the corresponding true value. cov represents the covariance
function and the std represents the standard deviation func-
tion.

The F1 score is defined as:

F1(y, ŷ) = 2
P (y, ŷ)R(y, ŷ)

P (y, ŷ) +R(y, ŷ)
(4)

where P (y, ŷ) represents the precision function and
R(y, ŷ) represents the recall function.

Because the MOSEI dataset requires the prediction of
sentiment polarity, we treat it as a binary classification
task with a zero bound when computing the classification-
related metric. Futher more, the classification evaluation
metrics for the dataset are divided into two components,
namely Non-negative/Negative (Left) and Positive/Negative
(Right). Non-negative/Negative (Left) refers to categoriz-
ing sentences with sentiment intensities of 0 or positive val-
ues as non-negative class, and sentences with negative sen-
timent intensities as negative class, followed by the com-
putation of classification metrics. Positive/Negative (Right)
involves categorizing sentences with positive sentiment in-
tensities as positive class, and sentences with sentiment in-
tensities of 0 or negative values as negative class, followed
by the computation of classification metrics.

1.2. Computation and parameter efficiency.

Parameter efficieney. In our study, we compared the pa-
rameter counts of the Text Conditioned Resampler (TCR)
when employing only a single linear layer with that of uti-
lizing a conventional Multi-Head Attention (MHA) mecha-
nism. As shown in Table 1, initially, we calculated the pa-
rameter count when solely using FFN adapter during fine-
tuning. Subsequently, we computed the parameter count
when employing a regular Attention layer in the TCR, as
indicated in the second row of Table 1. Consequently, we
obtained the parameter counts for the TCR utilizing only
one linear layer for each modality, revealing a parameter
reduction of 90%.



Method Trainable
Params↓

Extra
Params↓

only FFN Adapter 18.7M -
Normal Attention TCR 245M 226.3M
One Linear TCR (Ours) 40M 21.3M

Table 1. Comparison of the trained parameters.

Method MACs(G)↓ Extra
MACs(G)↓

only Text 200.01 -
Concat Input 319.47 119.46
Querying as Prompt (Ours) 216.93 16.92

Table 2. Comparison of the computational cost.

Input
Modality Accuracy↑

only Text 55.24%
Audio+Text 68.99%
Visual+Text 76.93%
Audio+Visual+Text 78.41%

Table 3. Comparison of the input modalities.

Computation efficiency. We conducted a comparison be-
tween our approach and the computational cost incurred by
directly concatenating Visual, Audio, and text inputs. As-
suming a text token count of 23, and both Visual and Audio
token counts at 10 each, the direct concatenation results in
a language model input token count of 43. Conversely, em-
ploying our Querying as Prompt method leads to an input
token count of 25, as illustrated in the table 2. Initially, we
computed the computational cost when only text is input,
yielding a value of 200.01 GMAC. Subsequently, we sepa-
rately calculated the computational costs for Concatenation
input and Querying as Prompt, subtracting the cost of text-
only input to determine the additional computational load
introduced by the other modalities. Notably, our approach
incurs only 14% of the additional computational cost com-
pared to the direct concatenation input method.

1.3. Extra experiments

Input modality ablation. We conducted a comparative
analysis on the AVQA dataset, examining the outcomes de-
rived from different modalities of input. As shown in Ta-
ble 3, it is evident that the performance is notably inferior
when considering only the text modality. However, with
the inclusion of each additional input modality, there is a
corresponding improvement in performance, indicating the

Input Frames 10 20 30

Accuracy 78.41% 78.55% 78.75%

Table 4. The results of our method on AVQA datasets with differ-
ent numbers of input video frames.

Method Flamingo Q-Former Ours

Acc.↑/ Params.↓ 68.5%/ 1.7B 53.93%/ 335M 78.41%/ 40M

Table 5. The results of reimplemented Flamingo and Q-Former on
AVQA dataset.

utility of information from each modality. Notably, the Vi-
sual modality contributes the most substantial enhancement
in accuracy.

Input video frame ablation. Table 4 shows the results of
our method with different input lengths of video frames and
is observed that increasing input length can even slightly
boost the performance, which reveals that our method can
effectively handle the long inputs of video/audio modality.
For a fair comparison with previous works, we reported the
result with 10 frames’ input in the main text.

Comparison with Flamingo and Q-Transformer. We
supplement the following results of fine-tuning Flamingo
and Q-Former on the AVQA dataset in Table 5. Both
models are difficult to converge due to the significantly in-
creased scale of training parameters or inputs, leading to the
poor performances on the AVQA task.
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