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Supplementary Material

A. Theoretical Foundation of Classifier-free
Diffusion Model for Planning

A.1. Review of Classifier-guided Diffusion Model

Firstly, for a given trajectory τ , the standard reverse process
of an unconditional diffusion probabilistic model is defined
by pθ(τ

i|τ i+1). This framework is then extended to incor-
porate conditioning on a specific label y (e.g., the reward),
which is considered in the context of current-step denoised
trajectory τ i, which is represented as pϕ(y|τ i). Conse-
quently, the reverse diffusion process can be reformulated
as pθ,ϕ(τ

i|τ i+1,y). This approach introduces additional
parameters ϕ alongside the original diffusion model param-
eters θ. The parameters ϕ can be viewed as a classifier, that
encapsulates the probability of whether a noisy trajectory τ i

satisfies the specific label y, with a notation of pϕ(y|τ i).
Under the constraints illustrated in [6, 23], we can derive

the following theorem with lemma
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Theorem A.1. The conditional sampling probability of re-
verse diffusion process pθ,ϕ(τ

i | τ i+1,y) is proportional
to unconditional transition probability pθ(τ i | τ i+1) multi-
plied by the classified probability pϕ(y | τ i).
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The term pϕ
(
y | τ i+1

)
is not directly correlated to τ i at

the diffusion timestep i, thus can be viewed as a constant
with notation Z.

On this basis, using Taylor series expansion [15], we can
sample trajectories by the modified Gaussian resampling.

Theorem A.2. With a sufficiently large number of reverse
diffusion steps, the sampling from reverse diffusion pro-
cess pθ,ϕ(τ i | τ i+1,y) can be approximated by a modified
Gaussian resampling. That is

pθ,ϕ(τ
i|τ i+1,y) ≈ N (τ i;µθ +Σ∇τ log pϕ

(
y | τ i

)
,Σ),
(15)

where µθ = µθ(τ
i) and Σ are the mean and variance of

unconditional reverse diffusion process pθ(τ i | τ i+1).

Proof. With the above definition, we can rewrite the trans-
fer probability of the unconditional denoising process as

pθ(τ
i | τ i+1) = N (τ i;µθ,Σ) (16)

log pθ(τ
i | τ i+1) = −1

2
(τ i − µθ)

TΣ−1(τ i − µθ) + C

(17)

With a sufficiently large number of reverse diffusion
steps, we apply Taylor expansion around τ i = µθ as
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Therefore, using Eq. 14, we derive
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which means,

pθ,ϕ(τ
i|τ i+1,y) ≈ N (τ i;µθ +Σ∇τ log pϕ

(
y | τ i

)
,Σ)

A.2. Classifier-free Diffusion Model

While classifier guidance successfully achieves conditional
guidance during trajectory generation, it is nonetheless re-
liant on gradients from a separate trained classifier which is
hard to obtain in many cases. Classifier-free guidance [18]
seeks to eliminate the classifier, which achieves the same
effect as classifier guidance, but without such gradients.



First of all, we define the score function of the uncondi-
tional diffusion model as

ϵθ(τ
i) = −Σ∇τ log pϕ

(
τ i
)
. (19)

Then, through Eq. 13 and 15, the score function of the
classifier-guided diffusion model can be expressed as

ϵθ(τ
i,y) = ϵθ(τ

i)− αΣ∇τ log pϕ
(
y | τ i

)
, (20)

where α is a scale hyper-parameter.

Theorem A.3. Classifier-free guided diffusion model per-
forms sampling with the linear combination of the condi-
tional and unconditional score estimates as,

ϵ̂θ = ϵ̂θ(τ
i,y) = (1− ω)ϵθ(τ

i) + ωϵθ(τ
i,y), (21)

implicitly embedding guidance into the score function, with
ω the scale hyper-parameter.

Proof. Considering there is an implicit classifier denoted as
p̃ϕ(y | τ i), with Bayes Rule [43], we can expand it as

p̃ϕ(y | τ i) ∝ p̃θ,ϕ(τ
i,y)/pθ(τ

i).

Then gradient of this implicit classifier would be

∇τ log p̃ϕ(y | τ i) = ∇τ log p̃θ,ϕ(τ
i,y)−∇τ log pθ(τ

i).
(22)

Substitute Eq. 19 in RHS, we get

αΣ∇τ log p̃ϕ(y | τ i) = αΣ∇τ log p̃θ,ϕ(τ
i,y)

− αΣ∇τ log pθ(τ
i)

= −αϵ̂θ(τ i,y) + αϵθ(τ
i)

And then substitute Eq. 20 in LHS,
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i,y) = −αϵ̂θ(τ i,y) + αϵθ(τ
i)

αϵ̂θ(τ
i,y) = ϵθ(τ

i,y) + (α− 1)ϵθ(τ
i)

ϵ̂θ(τ
i,y) = (1/α)ϵθ(τ

i,y) + (1− 1/α)ϵθ(τ
i)

(23)

Let ω = 1/α, we obtain,

ϵ̂θ(τ
i,y) = (1− ω)ϵθ(τ

i) + ωϵθ(τ
i,y),

which is equal to Eq. 21.

Therefore, in classifier-free diffusion guidance, we only
need to train a single neural network to parameterize both
conditional score estimator ϵθ(τ

i,y) and unconditional
score estimator ϵθ(τ i), where for the unconditional model
we can set an empty set ∅ for the condition identifier y
when predicting the score, i.e. ϵθ(τ i) = ϵθ(τ

i,y = ∅).
Following the settings of [18], we jointly train the uncon-
ditional and conditional models simply by randomly setting
y to the unconditional class identifier ∅ with probability
β, which balances off the diversity and the relevance of the
conditional label of generated samples.

B. Pseudo-code of Training SkillDiffuser
As illustrated in Sec. 4.4, we provide the pseudocode for
our SkillDiffuser’s training process in Algorithm 1, detail-
ing its sequential stages and core mechanics. Additionally,
Algorithm 2 describes the inference process, illustrating its
steps of skill abstraction and trajectory generation.

Algorithm 1 Training process of SkillDiffuser

Input: Dataset D of partially observed trajectories with
paired language

{
τ ξ = (l, {it,at}T−1

t=0 )
}N

ξ=1
, size of

the skill set K and horizon H , pre-trained language and
visual encoder Φlang, Φim

1: Initialize skill predictor f , conditional diffusion model
M, skill embedding model Λ and inverse dynamics
model Ψ

2: Vector Quantization op q(·)
3: while not converged do
4: Sample τ = (l, {it,at}T−1

t=0 )
5: Initialize partially observed states S = {Φ(i0)}
6: for k = 0...⌊ TH ⌋ do ▷ Sample a skill every H steps
7: z ← q(f(Φlang(l), S))
8: Ldiff ←Mdiff (S,Λ(z)) ▷ Diffusing process
9: for step t = 1...H do

10: S ← S ∪ {Φ(ikH+t+1)}
11: ãkH+t ← Ψ([skH+t, skH+t+1], ikH+t) ▷

Predict action using inverse dynamics model
12: Linv = E

[
∥akH+t − ãkH+t∥22

]
13: Train Ψ with objective Linv

14: end for
15: Train f,Λ andM with objective LVQ + λLdiff

16: end for
17: end while

Algorithm 2 Inference process of SkillDiffuser

Input: Initial partial observation i0 and the language in-
struction l, pre-trained language and visual encoder
Φlang, Φim

Input: Trained skill predictor f , conditional diffusion
model M, skill embedding model Λ and inverse dy-
namics model Ψ

1: Initialize partially observed states S = {Φ(i0)}
2: for k = 0...⌊ TH ⌋ do ▷ Sample a skill every H steps
3: z ← q(f(Φlang(l), S))
4: S′ ←Mdenoise(S,Λ(z)) ▷ Denoising process
5: for step t = 1...H do
6: akH+t ← Ψ([skH+t, s

′
kH+t+1], ikH+t)

7: s̃kH+t+1 ← Env.step(akH+t) ▷ Take action
8: S ← S ∪ {s̃kH+t+1}
9: end for

10: end for



Figure 5. Visualization of skill heat map on LOReL. We display the word frequency associated with a skill set of size 20 in LOReL,
normalized by column. The data’s sparsity and distinct highlights indicate certain language tokens are uniquely linked to specific skills.
There are eleven skills learned by our method.

Figure 6. Visualization of skill heat map on Meta-World Multi-
Task 10 (MT10). There are eight skills learned by our method.
(zoom in for best view)

C. More Visualizations

C.1. Visualization Results of Learned Skill Set

As mentioned before, we show the visualization results of
skill set on LOReL Sawyer Dataset in Fig. 5 and Meta-
World Multi-Task 10 (MT10) in Fig. 6. The visualization
results show that out of a 20-size skill-set, our SkillDif-
fuser learned 11 skills for LOReL (e.g. pull drawer han-
dle [skill 0], shut close container drawer [skill 15], etc.)
and 8 skills for Meta-World MT10 (e.g. open push window
[skill 0], open door with revolving joint [skill 16], etc.). The
results demonstrate strong skill abstraction abilities. For
example, the skill “shut close container drawer” abstracts
different expressions like “shut drawer”, “shut container”
into one skill semantic. In the heatmap, the presence of
distinct bright spots across eleven columns strongly reaf-

firms the model’s capability to discern and pinpoint specific
skills from visual inputs, in the absence of a pre-defined
skill library. This observation is not just a testament to
the model’s enhanced interpretative prowess over conven-
tional diffusion-based planning approaches but also marks
a remarkable stride in abstracting high-level skills into rep-
resentations that are intuitively understandable by humans.
Such evidence further validates the model’s proficiency in
sophisticated skill identification and representation.

C.2. Word Cloud of Learned Skills

We further show the word cloud of 8 learned skills of
LOReL Sawyer Dataset in Figure 7. From the results, we
can find that the model has successfully mastered eight key
skills, each closely linked to specific tasks. These skills
demonstrate strong robustness to ambiguous language in-
structions. For instance, skill 4 effectively abstracts the skill
of “open a drawer” from ambiguous expressions such as
“open a container”, “pull a dresser”, “pull a drawer” and
random combinations of these words. Similarly, skill 6 ex-
tracts the skill of “turn a faucet to the left”. This analy-
sis indicates our method’s resilience to varied and poorly
defined language inputs, confirming our SkillDiffuser can
competently interpret and act upon a wide range of linguis-
tic instructions, even those that are ambiguous or incom-
plete. These findings provide new perspectives and method-
ological guidance for future research in similar fields, espe-
cially in handling complex tasks with ambiguous language
instructions. We also provide the word cloud of learned
skills from Meta-World MT10 dataset in Fig. 8.



Skill 1 Skill 2 Skill 3 Skill 4

Skill 5 Skill 6 Skill 7 Skill 8

Figure 7. Word cloud of learned skills in LOReL Sawyer Dataset. We show eight of them here with the size corresponding to the word
frequency in one skill.

Skill 1 Skill 2 Skill 3 Skill 4

Skill 5 Skill 6 Skill 7 Skill 8

Figure 8. Word cloud of learned skills in Meta-World MT10 Dataset. We show eight of them here with the size corresponding to the
word frequency in one skill.

D. Dataset Descriptions
D.1. LOReL Sawyer Dataset

Close Drawer

Figure 9. A sample instance of LOReL Sawyer Dataset. The
start and goal images correspond to the instruction “close drawer”.

Language-conditioned Offline Reward Learning dataset,
abbreviated as LOReL [29], contains trajectories originat-
ing from a reinforcement learning buffer which is gener-
ated by a random policy. The trajectories are sub-optimal
and have language annotations through crowd-sourcing.
Overall, the dataset encompasses approximately 50,000
language-annotated trajectories, each within a simulated en-
vironment featuring a Sawyer robot arm, with every demon-
stration extending over 20 discrete steps. A typical LOReL
Sawyer environment is shown in Fig. 9. We assess our ap-
proach using the same set of instructions as those outlined
in the original paper [29] which are described with their ob-
jectives in Tab. 6. These evaluation tasks are along with var-



Task Description

Closing the Drawer Involves the robot’s precise manipulation of a drawer to close it, testing spatial
dynamics understanding and fine motor control.

Opening the Drawer Requires the robot to open a drawer, emphasizing its capability in tasks that
necessitate pulling and spatial navigation.

Turning the Faucet Left Assesses the robot’s precision in rotational movements for turning a faucet to
the left, a nuanced everyday action.

Turning the Faucet Right Tests the robot’s adaptability in mirrored instructions, involving turning the
faucet right, similar to the left turning task but in the opposite direction.

Pushing the Black Mug Right Requires the robot to push a specific object (black mug) to the right, testing its
skills in object recognition and directional movement.

Pushing the White Mug Down Involves pushing a different object (white mug) downward, further evaluating
the robot’s ability to differentiate objects and execute varied motion commands.

Table 6. Overview of tasks in LOReL Sawyer Dataset.

Instructions

open drawer and move black mug right
pull the handle and move black mug down

move white mug right
move black mug down

close drawer and turn faucet right
close drawer and turn faucet left

turn faucet left and move white mug down
turn faucet right and close drawer

move white mug down and turn faucet left
close the drawer, turn the faucet left and move black mug right

open drawer and turn faucet counterclockwise
slide the drawer closed and then shift white mug down

Table 7. LOReL composition tasks

ious rephrases of instructions which modify either the noun
(“unseen noun”), the verb (“unseen verb”), both (“unseen
noun+verb”), or entail a complete rewrite of the task (“hu-
man provided”), leading to a total of 77 distinct instructions
for all six tasks. This structure of tasks and rephrases en-
ables a comprehensive assessment of the robot’s ability to
interpret and execute a wide range of language-based com-
mands within the simulated environment.

D.2. LOReL Composition Tasks

We follow the same settings as LISA [13] to create 12 new
composition tasks through combining original evaluation
instructions as shown in Tab. 7.

Additionally, we also incorporate tasks such as “move
white mug right” and “move black mug down” to explore
the composition of skills related to colors (e.g., black and
white) and directions (e.g., right and down). This aims to
explore whether such skills can be combined to fulfill com-
plex instructions.

D.3. Meta-World Dataset

The Meta-World dataset establishes a new benchmark in the
field of multi-task and meta-reinforcement learning, offer-

Task Identifier Language Instruction

window-close push and close a window
window-open push and open a window

door-open open a door with a revolving joint
peg-insert-side insert a peg sideways to the goal point
drawer-open open a drawer
pick-place pick a puck, and place the puck to the goal

reach reach the goal point
button-press-topdown press the button from the top

push push the puck to the goal point
drawer-close push and close a drawer

Table 8. Annotated instructions for Meta-World MT10 tasks.

ing 50 unique robotic manipulation tasks. These tasks range
from simple to complex operations, providing researchers
with a diverse testing ground. Each task is meticulously de-
signed to ensure both challenge and common structural fea-
tures that can be leveraged in multi-task and meta-learning
algorithms. This design makes Meta-World an ideal choice
for assessing the effectiveness and adaptability of algo-
rithms in complex and variable task environments.

Particularly, the Multi-Task 10 (MT10) subset comprises
10 carefully selected tasks, where algorithms are trained
and subsequently tested on the same set of tasks. As shown
in Fig. 13, MT10 challenges algorithms’ learning and gen-
eralization capabilities in a multi-task environment, with the
aim to evaluate the consistency and efficiency of algorithms
in mastering multiple tasks, as well as their adaptability and
robustness in the face of diverse tasks. As there is currently
no widely-recognized instruction labeling of MT10, we pro-
vide our annotations here in Tab. 8.

We sample 100 trajectories for each task of MT10 and
form the expert dataset of 1000 trajectories. We have re-
leased our dataset with image observations on https:
//skilldiffuser.github.io.

https://skilldiffuser.github.io
https://skilldiffuser.github.io


Figure 10. Resulting images from applying skill 11 of Fig. 5.
The black dashed line is a horizontal reference and please pay at-
tention to the red oval region. (zoom in for best view)

E. More Ablations
E.1. Ablation Study on Skill Interpretability

Resulting Images from Applying Discrete Skills We visual-
ize resulting images from applying skill 11 of Fig. 5 which
has grounding of “open, drawer, pull, dresser, container”
(ranked from high frequency to low ones), consistent with
its actual actions in Fig. 10. We can clearly observe a be-
havior of pulling the drawer. And we would like to clarify
not all skills have clear semantic or action correspondences,
while some do.

E.2. Ablation Study on Condition Guidance Weight

Classifier-free guidance is widely used in generative model
domain for its ability to act as temperature control when
setting guidance weight above 1 during inference. In all of
our experiments, we set guidance weight to 1.2 by default.
But we also conduct ablation study on the condition guid-
ance weight here in Tab. 9. From the results, we find the
guidance weight slightly greater than 1 helps the planner’s
performance, while excessive weight hurts.

Guidance Weight 1.0 1.2 1.8 3.0 5.0

Success Rate on Seen Tasks 39.33% 46.67% 38.86% 39.03% 33.50%

Table 9. Ablation on guidance weight. (5 episodes over 3 seeds.)

F. More Results
F.1. Task-wise Performance on LOReL Dataset

We further demonstrate the performance of our method and
other baselines on LOReL Sawyer dataset in Fig 11 and 12.
As can be seen from the figures, especially from Fig. 12,
our method’s average performance on 5 rephrases is nearly
10 percentage points higher than the previous SOTA, which
demonstrates its strong robustness against ambiguous lan-
guage instructions.

F.2. Task-wise Performance on Meta-World

We also provide the task-wise success rates on Meta-World
MT10 dataset in Fig. 14, achieved by Flat R3M [30],
Language-conditioned Diffuser and SkillDiffuser. The av-
erage performance is shown separately in the right figure.

From our experimental outcomes, it is clear to observe that
our SkillDiffuser demonstrates commendable performance,
particularly excelling in tasks involving mirrored instruc-
tions. SkillDiffuser exhibits an average performance en-
hancement of over 5% than previous language-conditioned
Diffuser, which highlights the model’s advanced capability
in understanding complex and ambiguous instructions com-
pared to traditional methods. It showcases SkillDiffuser’s
superior use of hierarchical architecture that employs inter-
pretable skill learning for diffusion-based planners to better
generate future trajectories.

G. Implementation Details

G.1. Hyper-parameters

Generally, we follow the settings illustrated in [13] with de-
tails specified in the following Tab. 10.

Hyper-parameter LOReL Meta-World

Skill Predictor Transformer Layers 1 1
Skill Predictor Embedding Dim 128 128
Skill Predictor Transformer Heads 4 4
Skill Set Code Dim 16 16
Skill Set Size 20 20
Dropout 0.1 0.1
Batch Size 256 64
Skill Predictor Learning Rate 1e-6 1e-5
Conditional Diffuser Learning Rate 1e-3 5e-3
Condition Guidance Weight 1.2 1.2
Inverse Dynamics Model Learning Rate 1e-3 5e-4
Diffuser Loss Weight 0.005 0.01
Horizon 8 8
VQ EMA Update 0.99 0.99
Skill Predictor and Diffuser Optimizer Adam Adam
Inverse Dynamics Model Optimizer Adam Adam

Table 10. Hyper-parameters of SkillDiffuser.

G.2. Architecture Details

1. We use 1 layer Transformer network for the skill predic-
tor and follow the implementation of VQ-VAE [45] to
achieve VQ operation.

2. The size of skill set is set to 20 and the planning horizon
is set to 8 for all implementations.

3. A temporal U-Net [36] with 6 repeated residual blocks is
employed to model the noise ϵθ of the diffusion process.
Each block is comprised of two temporal convolutions,
each followed by group norm [47], and a final Mish
non-linearity [26]. Timestep and skill embeddings are
generated by two separate single fully-connected layer
and added to the activation output after the first temporal
convolution of each block.



Figure 11. Task-wise success rates (in %) on LOReL Sawyer Dataset.

Figure 12. Rephrasal-wise success rates (in %) on LOReL Sawyer Dataset.

G.3. Training Details

1. We train our model with one NVIDIA A100 Core Ten-
sor GPU for about 45 hours in LOReL Sawyer dataset
and about 24 hours in Meta-World MT10 dataset (1000
trajectories in total).

2. In both LOReL and Meta-World dataset, the skill pre-
dictor and diffusion model are trained with Adam op-
timizer [21] using a learning rate of 1 × 10−3 for the
diffusion model, 1× 10−6 for the LOReL skill predictor
while 1× 10−5 for Meta-World skill predictor. We only
update parameters of Meta-World skill predictor every
ten iterations. The inverse dynamics model is updated
with Adam optimizer as well.

3. The batch size is set to 256 for LOReL Sawyer dataset
and 64 for Meta-World MT10 dataset.

4. The training steps of the diffusion model are 5K for
LOReL Sawyer dataset and 8K for Meta-World MT10
dataset. And the training epochs of the skill predictor are
500 for both datasets.

5. The planning horizon T of diffusion model is set to 100
and the denoising steps are set to 200 for all tasks.
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