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1. More details of our SDE Dataset

Details of Device To ensure precise spatial-temporal align-
ment, we design a robotic alignment system. This system
is composed of several key elements: a DAVIS346 event
camera [8], a robotic arm Universal Robot UR5e, an ND
8 filter from NiSi, and an illuminance meter, as shown in
Fig. 1. The specific settings for both the robotic arm and
event camera are contingent upon predefined paths and the
lighting conditions within the scenes. In practical terms, the
camera’s exposure time varies between 10 ms and 80 ms,
maintaining a fixed frame interval of 5 ms 1.
Details of Matching Alignment Strategy. Fig. 2 (a) il-
lustrates the variance between intervals a and b (highlighted
in blue regions), despite identical camera and robot settings,
leading to unpredictable temporal alignment errors. Our ap-
proach to mitigating this issue involves the introduction of a
novel matching alignment strategy. In Fig. 2 (b), we exem-
plify the alignment process by capturing six paired event-
image sequences for each scene—three under low-light and
three under normal-light conditions. These sequences are
precisely trimmed to match the start and end timestamps of
the predefined trajectory, ensuring consistent content across
all videos. Subsequently, we perform matching between the
1st low-light sequence and the 2nd normal-light sequence,
achieving minimal absolute errors of 1ms.
Details of Distribution of Our SDE dataset. Fig. 3 vi-
sualizes the temporal alignment error distribution (mea-
sured in seconds), the video length distribution within our
dataset, and the illumination variations across filming envi-
ronments. Exceeding the measured Lux levels of the SDSD
dataset [10], we capture sequences in well-illuminated en-
vironments due to the limitations imposed by the lens (with
an aperture of f2.0) and sensor size.
Benefits of complex motion. Our SDE dataset, rich in mo-

1DV software may adjust the interval between frame and exposure to
suit the desired exposure duration.

Figure 1. The devices used for collecting our dataset. From the
left to right is the Universal Robot UR5e, the DAVIS 346 event
camera, an ND8 filter, and an illuminance meter.

Input Method FLOPs (G) Params (M)

Event Only E2VID+ (ECCV’20) [7] 27.99 10.71

Image Only

SNR-Net (CVPR’22) [13] 26.35 4.01

Uformer (CVPR’22) [11] 12.00 5.29

LLFlow-L-SKF (CVPR’23) [12] 409.50 39.91

Retinexformer (ICCV’23) [1] 15.57 1.61

Image+Event

ELIE (TMM’23) [2] 440.32 33.36

eSL-Net (ECCV’20) [9] 560.94 0.56

Liu et al. (AAAI’23) [3] 44.71 47.06

Ours 180.90 22.73

Table 1. Comparison of computational complexity.

Method ELIE [2] eSL-Net [9] Liu et al. [3] Ours

Inference time 108.42 ms 37.05 ms 27.39 ms 30.76 ms

Table 2. Inference time with the resolution of 256× 256.

tion variety, is critical for future research in event-guided
low-light video enhancement, providing challenging and
real-world scenarios to test temporal consistency. This posi-
tions it as a fundamental resource for the event-based vision
community.
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Figure 2. (a) An illustration of the variable time interval between the start timestamp of the trajectory and the first frame timestamp in each
sequence. (b) An example of the matching alignment strategy.
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Figure 3. (a) Distribution of temporal alignment error (measured in seconds) of our dataset. (b) Distribution of video length of our dataset.
(c) Illumination distribution in the filming environment.

2. Additional Analysis

More Implementation Details. As outlined in the main
paper, our approach utilizes the dynamic version of the
SDSD dataset [10] to synthesize event streams. Notably,
this dataset’s training and testing sets differ from the static
version employed in SNR-Net [13] and Retinexformer [1].
Consequently, we undertake the task of retraining all these
methods instead of relying on quoted results from Retinex-
former [1]. In addition, we use the mixed precision [4]
training tool provided by PyTorch [5] , which can speed up
our training and reduce memory usage.

Computational Cost. In order to evaluate the computa-
tional complexity of our proposed method in contrast to sev-
eral state-of-the-art (SOTA) methodologies, we present both
the floating point operations (FLOPs) and the total num-

ber of parameters (Params) in Tab. 1. The computation of
FLOPs has been carried out at a resolution of 256 × 256.
It is important to note that the channel numbers in Liu et
al. [3] have not been explicitly stated; therefore, for the pur-
pose of maintaining a fair comparison, we have assumed the
channel number in each layer to be identical to that in our
method. In Tab. 2, we compare the inference time of our
method with other event-guided LIE methods, all tested on
an NVIDIA A30 GPU with mixed precision [4]. Our infer-
ence time is comparable to that of Liu et al. [3] and shorter
than ELIE’s [2] and eSL-Net’s [9].

Generalization Ability. In order to assess the generaliza-
tion capability of our proposed approach, we carry out an
experiment in the CED dataset [6] with the model trained in
our SDE dataset. Given that the CED dataset lacks paired
normal-light images to serve as ground truth, we offer qual-
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Figure 4. Qualitative results on MVSEC [14] dataset.
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Figure 5. Qualitative results of generalization evaluation.

itative results derived from challenging examples captured
from a moving vehicle within a tunnel, under varying light-
ing conditions such as with or without sunlight. As depicted
in Fig. 7 and Fig. 8, our method capably recovers details
obscured in the low-light image, while simultaneously pre-
venting overexposure as seen in (d) and color distortion in
(f) and (i). Besides, even the structured details of the top
of the tunnel are reconstructed by our method as shown in
Fig. 8 (g). This effectively exhibits the robustness of our
methodology. Ultimately, we have conducted two experi-
ments: one on the MVSEC, as detailed by [14], and another
wherein the model, having been trained on the synthetic
events from the SDSD dataset [10], underwent evaluation
against the real events captured within our SDE dataset. The
visual results of these experiments are shown in Fig. 4 and
5, respectively.
Performance with higher resolution. To explore our per-
formance with the resolution of 512 × 512, we follow the
same process in the main paper to synthesize data with
SDSD dataset [10]. As shown in Tab. 3 and Fig. 6, our
method achieves the SOTA performance and the best vi-
sual result (see red box in Fig. 6).

Method eSL-Net [9] Liu et al. [3] Ours

PSNR / SSIM 25.83 / 0.8441 28.12 / 0.8791 28.71 / 0.8923

Table 3. Numerical results on SDSD [10] with a resolution of 512×512.

More Visual Comparison Results. We provide more vi-
sual comparisons on both our SDE dataset and SDSD [10]
dataset. We compare our method with recent methods with
three different settings: (I) the experiment with events as in-
put, including E2VID+ [7]. (II) the experiment with a RGB
image as input, including SNR-Net [13], Uformer [11],
LLFlow-L-SKF [12], and Retinexformer [1]. (III) the ex-
periment with a RGB image and paired events as inputs,

(c) Ours(b) Liu et al. [23](a) eSL-Net [35]

Figure 6. Visual results on SDSD [10] with the resolution of 512× 512.

including ELIE [2], eSL-Net [9], and Liu et al. [3]. Visual
comparison results on our SDE dataset are shown in Fig. 9
and Fig.10, while results on SDSD [10] dataset are shown
in Fig. 11 and Fig. 12.
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Figure 7. Generalization results in the driving tunnel sequence captured in CED [6] dataset.
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Figure 8. Generalization results in the driving tunnel sun sequence captured in CED [6] dataset.
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Figure 9. Qualitative results on our SDE dataset.
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Figure 10. Qualitative results on our SDE dataset.
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Figure 11. Qualitative results on SDSD dataset [10].
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Figure 12. Qualitative results on SDSD dataset [10].


