
Descriptor and Word Soups : Overcoming the Parameter Efficiency
Accuracy Tradeoff for Out-of-Distribution Few-shot Learning

Supplementary Material

Algorithm 1 Descriptor soup pseudo-code, PyTorch-like
'@' means matrix multiplication in Python.
'+' means concatenation when operating on lists.
Inputs: L2-normalized image_embeddings, y_truth
classnames: list of classnames in English
model: CLIP-style model
descriptions: list of descriptions from an LLM
Hyperparameters: m (number of members in the soup)
descriptions = ['which has legs.', 'which can swim.', ...]

def get_accuracy(image_embeddings, text_embeddings,
y_truth):

scores = image_embeddings @ text_embeddings.T
return (scores.argmax(dim=1) == y_truth).mean()

def get_description_embeddings(description):
d = tokenizer(['a photo of ' + classname + ', ' +

description for classname in classnames])
return normalize(model.encode_text(d))

accuracies = []
for description in descriptions:

text_embeddings = get_description_embeddings(
description)

accuracies.append(get_accuracy(
image_embeddings, text_embeddings, y_truth))

sort descriptions by accuracies
descriptions_sorted = descriptions[

accuracies.sort(descending=True).indices]

initialize with best descriptor
soup, accuracy = [descriptions_sorted[0]], accuracies[0]

greedy selection
for description in descriptions_sorted:

soup_embeddings = stack(
[get_description_embeddings(description)

for description in soup + [description]])
text_embeddings = normalize(

soup_embeddings.mean(dim=0))
if get_accuracy(image_embeddings,

text_embeddings, y_truth) > current_acc:
soup = soup + [description]

return soup[:m]

Limitations
Similar to many related works, the main limitation of our
work is that we require the source dataset to cover a broad
range of classes (e.g. ImageNet). As a counter example, we
cannot hope to train on pets classification and generalize to
ImageNet. We highlighted this limitation in Table 1 of the
main paper (top) with qualitative examples.

A. Training details
Images are not augmented during the greedy descriptor se-
lection process; image augmentation during finetuning is
consistent with prior work. Descriptors are always selected
using the pretrained model parameters. Selecting descriptors

Algorithm 2 Word soup pseudo-code, PyTorch-like
Hyperparameters: k0, k1, m, patience
Inputs: L2-normalized image_embeddings, y_truth

words = ["the", "of", "and", ...]
accuracies = []
for word in words:

text_embeddings = get_description_embeddings(word)
accuracies.append(get_accuracy(

image_embeddings, text_embeddings, y_truth))
sort descriptions by accuracies
words = words[accuracies.sort(descending=True).indices]

soup = []
for repeat m times:

first_word = random.shuffled(words[0:k0])[0]
word_chain = first_word
accuracy = get_accuracy(image_embeddings,

get_description_embeddings(word_chain), y_truth)
words_k1 = random.shuffled(words[0:k1])[0:patience]

greedy selection
for word in words_k1:

text_embeddings = get_description_embeddings(
word_chain + " " + word)

next_accuracy = get_accuracy(image_embeddings,
text_embeddings, y_truth)

if next_accuracy > accuracy:
word_chain = word_chain + " " + word

soup = soup + [word_chain]

return soup

based on finetuned model weights would be sub-optimal,
since the pretrained text encoder captures a richer set of tex-
tual information. Remaining details are organized in Table
7. Mini-batches are randomly sampled, but with exactly one
sample per label per batch. Cross entropy and CLIPood both
tune the last three layers of the image and text encoders, in
addition to a shallow text prompt (like CoOp) at a higher
learning rate. The only difference between Cross entropy
and CLIPood is the loss function; the latter method uses an
adaptive margin. We use cross entropy loss for all baselines
except ProDA and ProGrad. ProDA and ProGrad consume
more GPU memory during training, so we were unable to
fit them onto a single A40 GPU when training with cross
entropy. Consequently, we were forced to use a CLIP-like
contrastive loss for these two methods to reduce the number
of text encoder evaluations.

B. Additional Word Soup Motivation

A natural baseline for word soup is soft prompt tuning
(CoOp), since the former method can be thought of as “dis-
crete” prompt tuning. Soft prompt tuning optimizes over a
continuous parameter space using gradient descent, whereas

General Parameters

batch size 64
learning rate tuned per method
weight decay 1e-5
number of iterations 750
learning rate decay none
softmax temperature 60
optimizer SGD momentum=0.9
label smoothing 0
EMA weight averaging β 0.995

Prompt Tuning Parameters

CoOp prompt length 3
CoOp prompt depth 1 (shallow)
MaPLe prompt depth 3
MaPLe prompt length 3
CoOp prompt initialization “a photo of”
text prompt learning rate multiplier 10 ×

Word Soup and Diversity Loss Parameters

k0 250
k1 1000
patience 250
λ 0.25
τ0 10

Optimal Learning Rates

Cross entropy 2e-5
CLIPood [51] 2e-5
CoOp [70] 8e-5
MaPLe [25] 0.025
KgCoOp [22] 4e-5
ProDA [31] 3.2e-4
ProGrad [71] 1.28e-3
VPT [20] 0.8
bitfit [64] 1.25e-4
CLIP-adapter [11] 6e-3
SSF [29] 1e-4
adapter [16] 2.5e-3
LoRA [17] 1e-5

Table 7. Miscellaneous training details for training on 16-shot
ImageNet-1K in the OOD setting.

word soup optimizes over a discrete parameter space using a
greedy algorithm. Many prior works (e.g. [58, 59]) observe
that gradient descent is limited to a narrow convex basin
around the initialization, when finetuning a pretrained deep
model. This can be shown by linearly interpolating between
the pretrained and finetuned parameters, similar to Fig. 6. In
this figure, we plot in orange both the source and target error
for interpolations between a randomly initialized descriptor

0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.500.30

0.35

0.40

Tr
ai

ni
ng

 e
rro

r

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.0

0.2
0.304

0.308

0.312

0.312

0.3160.
32

0

0.324

0.328

0.332
0.336

0.340

0.344

0.348

0.352

0.356

0.360

0.364
0.368
0.372

0.376
0.380
0.384

0.388

0.392
0.396

0.400

0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Euclidean distance in parameter space

0.34

0.36

0.38

Av
er

ag
e

ta
rg

et
 e

rro
r

word-soup initialization random initialization interpolation between the two initializations

0.0 0.2 0.4 0.6 0.8 1.0
Euclidean distance in parameter space

0.2

0.0

0.2

0.340

0.340

0.344

0.344

0.3
480.

35
2

0.356

0.360
0.364

0.368
0.372

0.376
0.380

0.384

0.388

0.392

0.396

0.
40

0

Figure 6. Contour plot of the 0-1 loss over the 2D parameter space
spanned by two initializations (indicated by stars) and the fine-
tuned parameters. The orange and blue stars indicate the random
initialization and word soup initialization, resp. The top and bottom
rows plot the 0-1 loss on the training and test data (average of 10
test datasets), resp. For this figure, we train 10 descriptor tokens.
The plots on the right indicate the loss value at the corresponding
locations in the contour plots on the left, for better visualization.
We observe that the word soup initialization lies in a lower and
flatter region, compared to the random initialization. Consequently,
finetuning from the word soup initialization results in lower training
and test errors compared to finetuning from the random initializa-
tion.

(orange star) and the finetuned soft descriptor. The resulting
soft descriptor lies at the bottom of a sharp loss basin. On
the other hand, the word soup initialized descriptor (blue
star) lies at an equally low but much flatter region of the
loss landscape. Finetuning from this initialization leads to
a lower error on both source and target data, as indicated
in blue. This visualization suggests that our word soup al-
gorithm finds robust flat minima, since it is not limited to a
narrow loss basin like gradient descent methods.

C. Token offset trick (for Descriptor Soup)

We propose a novel trick to augment/diversify the descriptors
at test time to further increase the target accuracy of descrip-
tor soups. This trick does not improve the performance of
word soups significantly. Unlike the vision encoder, which
has a cls token at a fixed position (either prepended or ap-
pended to the image tokens), the CLIP text encoder does
not have a separate cls token. Instead, CLIP uses the output
embedding which corresponds to the position of the end-of-
sentence token in the input. In classification problems, the
text inputs are generally short compared to the context size
(number of total tokens). Consequently, the end-of-sentence
token is always near the beginning of the sequence, with the
remainder padded by null tokens. In this regime, there is
never any information at the end of the input token sequence
to attend to, so a large portion of the information in the pre-
trained model is not used. We remedy this inefficient use of
pretrained parameters by shifting the description toward the
end of the sequence by t tokens. For example, if t = 5, we

Source Cross-dataset Evaluation Targets Domain Generalization Targets

IN
et

C
al

te
ch

Pe
ts

C
ar

s

Fl
ow

er
s

Fo
od

A
ir

cr
af

t

SU
N

D
T

D

E
ur

oS
A

T

U
C

F

M
ea

n

IN
et

-V
2

Sk
et

ch

IN
et

-A

IN
et

-R

M
ea

n

CLIP ZS 67.1 93.3 89.0 65.4 71.0 85.7 25.0 63.2 43.6 46.7 67.4 65.02 61.0 46.6 47.2 74.1 57.22
Word soup 68.8 94.1 89.5 65.9 72.6 86.3 26.1 67.2 45.3 53.9 67.8 66.87 62.6 49.0 50.4 77.0 59.73
Vanilla CoOp 68.7 94.4 90.2 66.1 70.9 85.8 26.0 66.7 47.4 50.1 68.9 66.63 61.9 48.6 49.8 76.7 59.26

+ Word soup 69.1 94.6 91.1 65.2 71.8 86.0 25.1 67.4 46.0 51.9 69.1 66.82 62.7 49.4 50.3 78.0 60.09

Table 8. Experiments using a different source dataset (a 16-shot subset of LAION-2B queried using ImageNet label names). Settings are
identical to Table 10 (the expanded form of Table 6 in the main paper).

have:
• original: a photo of a dog, which may be large or small.
• augmented: a photo of a dog, ! ! ! ! ! which may be

large or small. (“!” denotes the null token)
For all experiments with token offsets, we set t =
{0, 5, 10, 15, 20, 25} for a total of 6 augmented copies per
descriptor. This diversifies the text embeddings at the ex-
pense of increasing the text centroid evaluation time 6-folds.

D. Centroid vs. Score Mean Evaluation
In this work, we presented both centroid and score mean re-
sults for both our soup methods and ensemble baselines.
Centroid evaluation refers to averaging the text features
among descriptors before calculating the cosine similarity
between image and text features. Score mean evaluation
refers to calculating the cosine similarity between image and
text features and then averaging the similarity scores among
descriptors.

Concretely, let there be m descriptors and c classes. Let
xI denote a normalized image feature and xj

T,k denote the
normalized text feature corresponding to class k and descrip-
tor j; k ∈ [1 : c] and j ∈ [1 : m].

The predicted score for class k using centroid evaluation,
sk, is defined as:

xT,k =
1

m

m∑
j=1

xj
T,k

sk =

〈
xI ,

xT,k

∥xT,k∥

〉
The predicted score for class k using score mean evalua-

tion is defined as:

sk =
1

m

m∑
j=1

〈
xI ,x

j
T,k

〉
Empirically, we found that score mean evaluation usually

leads to small numerical improvements. However, in large
scale applications where retrieval speed is crucial, centroid

0 1 2 4 8 16
Shots

64.0

64.5

65.0

65.5

66.0

66.5

67.0

Cr
os

s-
da

ta
se

t E
va

lu
at

io
n

 (a
ve

ra
ge

 a
cc

ur
ac

y
of

 1
0

da
ta

se
ts

)

CoOp
Word soup
CoOp + word soup

0 1 2 4 8 16
Shots

57.5

58.0

58.5

59.0

59.5

60.0

Do
m

ai
n

Ge
ne

ra
liz

at
io

n
Ev

al
ua

tio
n

 (a
ve

ra
ge

 a
cc

ur
ac

y
of

 4
 d

at
as

et
s)

CoOp
Word soup
CoOp + word soup

Figure 7. Different number of shots. We experiment with the same
14 datasets as the main paper and report average of 3 random trials.
We report average target accuracies over 10 diverse datasets (left)
and 4 ImageNet shifts (right). Here we verify that the improvements
of both word soup and CoOp + word soup over CoOp are resilient
to the number of shots. Indeed, we emphasize that word soup
is very resilient in extreme low shot scenarios due to the low
number of parameters.

evaluation can be more efficiently implemented than score
mean evaluation, due to the existence of fast nearest neighbor
retrieval frameworks.

E. Additional Ablation Studies
We present additional ablation studies in Table 8 and Figure 7.
Table 8 presents OOD generalization results with a different
source data set. Figure 7 presents results with different
number of shots.

Parameter Efficiency Fig. 2 compares the parameter ef-
ficiency of our word soups against PEFT baselines. We
observe that word soup can achieve the maximal CoOp accu-
racy using 25× and 70 × fewer parameters on the XD and
DG benchmarks, resp. This impressive reduction in parame-
ter storage requirements is due to the discrete nature of word
soup parameters. A discrete token requires only one integer
parameter, while a soft token requires 512 floating-point
parameters.

Computational Efficiency We emphasize that our method
adds negligible test time computation, despite requiring m

text encoder evaluations per label. For classification tasks,
more time is spent processing image data compared to text
data. For example, the evaluation of the m = 8 word soup
in Table 6 took 239 seconds, of which 234 seconds were
spent evaluating image embeddings and only 4.6 seconds
were spent evaluating text embeddings.

Source Cross-dataset Evaluation Targets Domain Generalization Targets

m IN
et

C
al

te
ch

Pe
ts

C
ar

s

Fl
ow

er
s

Fo
od

A
ir

cr
af

t

SU
N

D
T

D

E
ur

oS
A

T

U
C

F

M
ea

n

IN
et

-V
2

Sk
et

ch

IN
et

-A

IN
et

-R

M
ea

n

CLIP ZS 1 67.1 93.3 89.0 65.4 71.0 85.7 25.0 63.2 43.6 46.7 67.4 65.02 61.0 46.6 47.2 74.1 57.22
Vanilla CoOp 1 70.0 94.6 91.2 65.4 71.2 86.3 24.6 66.9 48.0 48.3 68.7 66.52 63.2 48.4 49.2 76.2 59.25
+ word soup 8 69.6 94.6 90.8 65.2 70.3 86.0 24.8 66.9 47.6 50.7 69.0 66.59 62.9 48.2 49.6 76.3 59.26

CoOp ensemble 8 69.8 94.4 91.5 66.2 72.6 86.6 25.7 67.7 46.4 47.9 67.8 66.68 63.0 48.4 49.6 75.8 59.18

CoOp regularized towards initialization 1 70.2 94.8 91.1 65.4 72.1 86.2 24.8 67.6 46.2 52.7 69.0 66.97 63.6 49.1 49.6 77.5 59.94
+ word soup 8 69.9 94.7 90.1 64.7 71.8 85.5 25.0 67.4 45.5 53.6 68.7 66.69 63.4 49.2 49.9 77.7 60.05

CoOp with label smoothing 1 70.1 94.5 90.6 64.9 72.0 85.8 24.6 67.3 45.4 50.0 68.6 66.37 63.4 49.1 50.2 77.6 60.09
+ word soup 8 69.9 94.5 89.9 64.9 71.7 85.2 25.0 66.8 44.8 50.0 68.3 66.13 63.6 49.3 50.1 77.7 60.16

CoOp + word soup (λ = 0) 8 69.8 94.3 90.8 64.8 71.1 86.0 24.1 67.2 46.8 48.4 68.8 66.21 63.2 48.3 49.0 76.1 59.15
+ our diversity loss (λ = 0.25) 8 70.2 94.7 91.0 65.4 72.3 86.0 24.8 67.8 45.9 55.2 69.2 67.23 63.6 49.3 50.1 77.9 60.20

Table 9. Ablation results to support the diversity loss. “Vanilla CoOp + word soup” refers to naively appending the word soup descriptors
trained on the pretrained model to the separately trained soft CoOp prompts. “CoOp ensemble” refers to ensembling m randomly-initialized
soft descriptors. This requires running CoOp m times, but offers negligible gains in accuracy. In the second half of the table, we fix the
descriptor tokens and train the prompt tokens only. We first run CoOp with standard CE training (λ = 0) and observe a decrease in accuracy
compared to the naive “Vanilla CoOp + word soup” baseline, caused by the diversity collapse issue observed in Figure 4. We then attempt to
simply minimize the KL divergence between the training prediction and the initial prediction; this shows that the diversity loss is not simply
a form of regularization towards the initialization as in MIRO [4] and ProGrad [71]. Finally, we train using our diversity loss with λ = 0.25,
which achieves a 1% increase in accuracy on average. Average of 3 trials. This is an expanded version of Table 4 in the main paper.

Source Cross-dataset Evaluation Targets Domain Generalization Targets

m IN
et

C
al

te
ch

Pe
ts

C
ar

s

Fl
ow

er
s

Fo
od

A
ir

cr
af

t

SU
N

D
T

D

E
ur

oS
A

T

U
C

F

M
ea

n

IN
et

-V
2

Sk
et

ch

IN
et

-A

IN
et

-R

M
ea

n

CLIP ZS [43] 1 67.1 93.3 89.0 65.4 71.0 85.7 25.0 63.2 43.6 46.7 67.4 65.02 61.0 46.6 47.2 74.1 57.22
CoOp [70]† 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88 64.20 47.99 49.71 75.21 59.3
Co-CoOp [69]† 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74 64.07 48.75 50.63 76.18 59.9
MaPLe [25]† 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30 64.07 49.15 50.90 76.98 60.3
CLIPood [51]† 71.6 64.9 49.3 50.4 77.2 60.5

Cross Entropy (CE) 1 72.3 94.6 89.8 64.9 72.4 86.3 25.3 68.1 45.7 51.5 69.4 66.80 65.4 49.4 49.8 77.0 60.39
+ GPT score mean [35] 5.8 71.7 94.3 89.9 64.5 72.1 86.0 24.5 68.6 46.6 53.8 68.4 66.86 64.9 49.4 48.8 76.6 59.92
+ Random descriptors 32 71.6 94.6 89.3 64.7 72.1 86.0 25.3 67.5 45.4 55.2 68.8 66.89 64.8 49.9 50.2 77.9 60.69
+ Waffle CLIP [45] 32 71.6 94.1 89.8 65.0 72.6 86.1 26.1 67.7 45.0 50.9 68.4 66.58 65.1 49.7 50.3 77.4 60.65
+ Descriptor soup (ours) 16.7 72.1 94.7 89.9 65.0 72.4 86.3 25.6 68.0 45.6 53.9 69.5 67.10 65.3 49.7 50.1 77.7 60.70

+ offset trick (ours) 100 72.1 94.1 90.4 66.3 73.3 86.3 26.1 67.8 46.4 55.0 69.4 67.51 65.3 49.8 50.8 78.2 61.01
+ Word soup centroids (ours) 8 71.8 94.4 90.4 65.0 72.3 86.1 25.3 68.2 45.5 55.4 69.1 67.16 65.2 50.2 50.7 78.7 61.22
+ Word soup score mean (ours) 8 71.7 94.5 90.2 65.1 72.4 86.2 25.6 68.1 45.6 57.3 69.3 67.43 65.3 50.3 50.9 78.7 61.32
+ Descriptor soup upper bound 11 71.7 94.4 90.2 66.5 72.9 86.1 26.3 67.4 46.4 57.2 68.6 67.62 64.9 49.7 50.9 78.6 61.01

ProGrad [71] 1 69.8 94.4 91.5 65.8 72.4 86.4 25.3 66.6 47.2 46.3 69.0 66.48 63.2 48.2 48.6 75.9 58.96
KgCoOp [22] 1 69.2 94.3 89.9 63.9 71.0 85.7 23.7 66.2 44.4 54.4 68.3 66.16 62.3 48.0 48.8 75.5 58.64
ProDA [31] 32 70.0 94.2 90.2 64.7 70.8 85.7 23.1 67.0 45.8 51.4 69.4 66.23 63.0 48.1 48.4 75.7 58.83
Vanilla CoOp [70] 1 70.0 94.6 91.2 65.4 71.2 86.3 24.6 66.9 48.0 48.3 68.7 66.52 63.2 48.4 49.2 76.2 59.25
+ Word soup score mean (ours) 8 70.2 94.7 90.9 65.4 72.0 86.0 25.0 67.7 45.9 56.2 69.2 67.30 63.6 49.3 50.1 77.9 60.25

Vanilla MaPLe [25] 1 70.7 93.7 91.2 65.4 71.9 86.2 25.0 67.2 46.2 48.6 68.9 66.44 63.9 48.6 48.4 76.3 59.32
+ Word soup score mean (ours) 8 70.8 94.1 91.2 65.2 71.8 85.8 24.0 67.0 46.0 53.5 68.0 66.65 64.0 49.6 49.2 77.9 60.20

Vanilla CLIPood [51] 1 72.9 94.8 89.8 64.9 72.2 85.9 25.8 67.8 46.4 48.7 68.7 66.50 66.0 49.5 49.5 76.9 60.47
+ Word soup score mean (ours) 8 72.0 94.4 90.8 64.8 72.4 86.0 25.4 67.9 46.0 57.6 68.9 67.42 65.5 50.2 50.8 78.5 61.23

Table 10. Comparison with few-shot methods and few-shot methods stacked with ZS methods. † indicates author-reported numbers on the
same datasets with the same train-test splits. Other numbers are from our reproductions using our github code. We tune all baselines on a
withheld validation set, so our numbers are different from published numbers. The descriptor soup upper bound was trained to maximize
average cross-dataset accuracy (on test data); this loosely approximates the maximally achievable accuracy on these benchmarks without
using extra information. All other methods were trained on 3 random 16-shot splits of ImageNet. m indicates number of descriptors used.
All methods are evaluated on top of 3 models finetuned with different random seeds. Due to space limitations, we only compare with ZS
baselines stacked on top of the CE-finetuned few-shot model, since this is the best finetuned model. Either our descriptor soup with the
offset trick or our word soup achieves the best accuracy on most datasets. Finally, we stack our word soup method on top of CoOp, MaPLe,
and CLIPood finetuned models to show that word soup is complementary to most existing robust finetuning methods. Average of 3 trials.
This is an expanded version of Table 6 in the main paper.

Source Cross-dataset Evaluation Targets Domain Generalization Targets

pa
ra

m
et

er
s

(th
ou

sa
nd

s)

IN
et

C
al

te
ch

Pe
ts

C
ar

s

Fl
ow

er
s

Fo
od

A
ir

cr
af

t

SU
N

D
T

D

E
ur

oS
A

T

U
C

F

Av
er

ag
e

IN
et

-V
2

IN
et

-S
ke

tc
h

IN
et

-A

IN
et

-R

Av
er

ag
e

VPT shallow 1 token 0.768 68.7 93.8 90.0 65.1 69.5 85.3 24.2 66.0 44.7 41.9 67.8 64.84 62.1 47.9 47.9 76.7 58.67
VPT shallow 2 tokens 2 68.7 93.8 90.0 65.2 69.5 85.2 24.2 66.2 44.8 42.3 67.1 64.84 62.2 48.0 47.3 76.7 58.54
VPT shallow 3 tokens 2 68.7 93.9 90.0 65.6 70.2 85.3 24.8 66.2 44.7 43.8 67.5 65.20 62.4 48.1 47.0 76.6 58.52
VPT shallow 3 tokens 2 68.6 93.8 89.5 64.8 70.1 85.3 24.1 66.1 44.5 45.4 67.7 65.12 62.1 48.0 47.1 76.4 58.41
VPT deep 2 layers 5 68.8 93.5 89.7 65.0 70.3 85.4 24.0 65.9 44.7 49.3 67.6 65.54 62.2 48.2 46.9 76.6 58.47
VPT deep 3 layers 7 68.7 93.5 89.4 65.3 70.4 85.3 24.2 66.2 44.8 45.0 67.5 65.16 62.3 48.2 46.8 76.4 58.42

MaPLe 1 layer 396 70.1 94.2 91.1 64.3 71.1 86.1 24.5 67.0 47.3 51.8 68.6 66.61 63.4 48.4 48.8 76.3 59.22
MaPLe 2 layers 397 70.4 93.6 91.8 64.3 71.3 85.9 24.7 67.0 46.9 48.1 68.5 66.21 63.7 48.3 49.2 76.1 59.34
MaPLe 3 layers 399 70.7 93.7 91.2 65.4 71.9 86.2 25.0 67.2 46.2 48.6 68.9 66.44 63.9 48.6 48.4 76.3 59.32

bitfit last layer 17 68.3 94.1 89.5 65.2 71.4 85.9 24.9 65.7 44.7 46.9 67.9 65.62 61.7 48.0 48.5 75.9 58.51
bitfit last 2 layers 34 68.8 93.9 89.9 65.3 71.4 85.9 25.1 66.4 45.1 47.4 68.4 65.88 62.1 48.6 48.5 76.6 58.93
bitfit last 3 layers 51 69.1 93.9 90.0 65.3 71.7 85.8 25.0 66.7 45.4 48.3 68.4 66.05 62.6 48.7 48.5 76.8 59.12

CoOp 1 token 0.512 69.4 94.3 91.4 64.4 71.7 86.3 24.6 67.2 47.3 49.1 68.5 66.49 63.1 48.2 49.0 76.1 59.08
CoOp 2 tokens 1 69.9 94.6 91.6 65.5 72.0 86.1 25.0 66.8 48.2 49.6 69.4 66.89 63.2 48.5 48.8 76.3 59.20
CoOp 3 tokens 2 70.2 94.5 91.0 66.0 71.6 86.3 24.6 66.8 47.6 49.0 68.9 66.63 63.4 48.5 49.5 76.3 59.45

ProGrad 1 token 0.512 69.4 94.2 91.0 65.6 72.7 86.4 25.1 66.2 46.0 48.2 68.5 66.39 62.8 48.1 48.5 75.7 58.77
ProGrad 2 tokens 1 69.5 94.1 90.8 65.7 72.6 86.3 24.8 66.5 45.5 47.7 68.7 66.28 62.8 48.0 48.5 75.7 58.75
ProGrad 3 tokens 2 69.8 94.4 91.5 65.8 72.4 86.4 25.3 66.6 47.2 46.3 69.0 66.48 63.2 48.2 48.6 75.9 58.96

KgCoOp 1 token 0.512 68.6 93.4 89.4 63.4 70.9 85.9 23.8 65.6 44.9 52.5 68.1 65.80 62.0 47.8 49.1 75.7 58.63
KgCoOp 2 tokens 1 69.0 93.3 89.3 62.8 70.2 85.8 23.8 66.0 45.4 53.0 69.0 65.85 62.4 48.0 49.1 75.9 58.85
KgCoOp 3 tokens 2 69.2 94.3 89.9 63.9 71.0 85.7 23.7 66.2 44.4 54.4 68.3 66.16 62.3 48.0 48.8 75.5 58.64

ProDA ensemble size 4 20 70.5 94.3 90.4 65.3 71.2 86.1 24.9 67.2 46.4 50.4 69.4 66.54 63.6 48.6 49.4 76.0 59.43
ProDA ensemble size 8 41 70.1 93.8 90.3 65.1 71.0 85.8 24.9 67.4 45.5 49.4 68.4 66.15 63.3 48.8 49.5 76.6 59.55
ProDA ensemble size 16 82 69.9 94.3 90.5 64.5 70.8 85.6 24.3 66.6 45.2 48.4 68.8 65.90 63.1 48.4 48.9 76.1 59.13
ProDA ensemble size 32 164 70.0 94.2 90.2 64.7 70.8 85.7 23.1 67.0 45.8 51.4 69.4 66.23 63.0 48.1 48.4 75.7 58.83
ProDA ensemble size 64 328 69.4 94.4 90.0 64.5 69.5 85.1 22.7 66.4 44.9 49.6 67.8 65.49 62.7 48.0 48.7 76.2 58.91

CLIP-adapter reduction=128 4 67.1 93.3 89.0 65.3 70.9 85.7 25.1 63.3 43.5 46.6 67.4 65.00 60.9 46.6 47.2 74.1 57.18
CLIP-adapter reduction=64 8 67.1 93.3 88.8 65.4 71.1 85.7 24.9 63.3 43.5 46.5 67.2 64.97 60.9 46.5 47.2 74.0 57.17
CLIP-adapter reduction=32 16 67.4 93.2 88.4 65.2 70.1 85.6 24.9 64.1 44.0 46.3 66.8 64.84 60.9 46.9 47.9 74.5 57.55
CLIP-adapter reduction=16 33 67.6 93.3 88.3 64.9 70.1 85.6 24.5 64.4 43.9 46.7 66.8 64.86 61.2 47.2 48.4 75.1 57.98
CLIP-adapter reduction=8 66 67.9 93.4 88.7 65.4 70.2 85.7 24.8 65.1 44.3 46.6 66.7 65.09 61.5 47.5 48.5 75.3 58.21
CLIP-adapter reduction=4 131 67.8 93.4 89.0 65.2 70.2 85.7 24.5 65.2 44.2 46.0 66.8 65.02 61.5 47.5 48.3 75.1 58.12

SSF last layer 12 68.1 94.0 89.5 65.4 71.0 85.7 24.7 65.6 45.3 51.6 68.5 66.13 61.6 47.8 46.4 75.7 57.87
SSF last 2 layers 25 68.5 94.1 89.9 65.1 71.2 85.8 24.8 66.3 45.9 49.1 68.2 66.04 62.1 48.3 47.2 76.3 58.46
SSF last 3 layers 37 68.5 94.2 89.5 64.9 71.2 85.3 24.4 66.2 45.8 49.3 67.8 65.86 62.1 48.1 47.2 76.3 58.44

LoRA rank=1 18 67.3 93.5 89.3 65.4 71.3 85.7 25.1 64.2 44.4 47.9 67.6 65.43 61.4 47.1 46.9 74.9 57.59
LoRA rank=2 37 67.6 93.7 90.0 65.7 71.2 85.7 25.3 65.6 45.9 49.6 67.8 66.05 61.9 47.7 45.3 75.6 57.62
LoRA rank=4 74 67.6 93.8 90.1 65.7 71.5 85.7 25.2 65.4 46.0 50.9 67.7 66.19 61.8 47.7 46.2 76.0 57.93
LoRA rank=8 147 68.0 93.9 90.0 65.7 71.4 85.4 25.5 65.9 46.3 52.6 67.2 66.39 61.9 47.1 42.2 74.4 56.40

ResBlock-adapter reduction=128 55 68.0 93.8 89.2 64.0 71.1 84.7 23.3 65.1 45.3 46.0 67.6 65.01 61.2 47.4 47.2 75.5 57.81
ResBlock-adapter reduction=64 111 68.8 94.0 89.7 64.2 70.8 85.0 23.5 65.8 45.5 46.9 68.0 65.35 61.8 48.0 48.0 76.3 58.52
ResBlock-adapter reduction=32 221 69.1 94.2 90.0 64.4 71.4 85.3 23.2 66.1 45.2 46.8 67.4 65.41 62.5 48.1 48.3 76.8 58.94
ResBlock-adapter reduction=16 442 69.3 94.2 89.9 64.2 71.3 85.3 23.8 66.4 45.6 47.5 67.9 65.60 62.8 48.4 48.4 76.9 59.12
ResBlock-adapter reduction=8 885 69.5 94.1 89.5 64.6 71.3 85.6 23.6 66.6 44.8 45.3 67.9 65.33 63.0 48.6 48.8 77.0 59.36
ResBlock-adapter reduction=4 1769 69.7 94.1 89.5 64.8 71.2 85.5 24.0 66.8 44.9 46.8 67.8 65.55 63.1 48.7 49.0 77.1 59.48

Word Soup m = 1 0.012 68.6 93.9 89.2 64.6 71.8 86.0 24.7 65.9 44.2 48.0 67.7 65.61 62.1 47.9 49.7 76.3 59.01
Word Soup m = 2 0.024 69.0 94.1 90.3 65.6 72.5 86.0 25.5 66.9 45.0 52.0 68.6 66.64 62.4 48.8 50.2 76.6 59.50
Word Soup m = 4 0.048 69.3 94.1 89.9 65.9 72.4 86.5 25.7 67.1 45.8 53.6 68.7 66.96 62.9 48.9 50.3 77.2 59.80
Word Soup m = 8 0.096 69.4 94.1 89.9 65.7 72.5 86.4 25.9 67.0 44.9 54.6 68.8 66.99 63.1 49.0 50.5 77.3 59.95
Word Soup m = 16 0.192 69.5 94.0 89.9 65.9 72.5 86.3 26.1 67.4 45.2 54.8 68.8 67.08 63.2 49.0 50.7 77.2 60.02
Word Soup m = 32 0.384 69.6 94.2 89.9 65.9 72.4 86.5 26.2 67.4 45.1 54.7 69.0 67.12 63.2 49.0 50.6 77.3 60.04
Word Soup m = 64 0.767 69.5 94.1 90.0 65.9 72.5 86.4 26.2 67.4 45.2 55.1 69.0 67.17 63.3 49.1 50.7 77.4 60.11

Word Soup + CoOp m = 4 2 70.2 94.5 91.0 65.6 72.3 86.0 25.1 67.7 45.7 56.1 68.6 67.26 63.7 49.3 50.1 77.9 60.26
Word Soup + CoOp m = 8 2 70.2 94.4 91.0 65.3 72.1 86.1 25.2 67.7 45.5 55.5 68.7 67.15 63.5 49.3 50.2 78.0 60.25
Word Soup + CoOp m = 16 2 70.2 94.5 91.0 65.7 72.6 86.1 24.9 67.8 45.6 55.5 69.2 67.30 63.7 49.5 50.5 77.9 60.39

Table 11. Detailed numerical results for PEFT comparison in Fig. 2. Average of 3 trials. These results are plotted in Figure 2 of the main
paper. Also reference Section 7 (Results) for a discussion.

Source Cross-dataset Evaluation Targets Domain Generalization Targets

m IN
et

C
al

te
ch

Pe
ts

C
ar

s

Fl
ow

er
s

Fo
od

A
ir

cr
af

t

SU
N

D
T

D

E
ur

oS
A

T

U
C

F

M
ea

n

IN
et

-V
2

Sk
et

ch

IN
et

-A

IN
et

-R

M
ea

n

Open-AI CLIP ViT-B/32

ZS 1 61.9 91.5 87.4 60.3 66.4 80.2 19.1 62.2 42.3 40.3 63.5 61.32 54.6 40.7 29.1 66.3 47.68
GPT score mean 5.8 63.0 91.8 88.1 60.0 66.6 80.2 19.1 64.4 43.1 36.2 62.7 61.22 55.4 41.0 29.4 65.9 47.95
Waffle CLIP 16 63.3 91.8 88.0 60.9 67.4 80.4 19.6 63.8 41.7 44.8 63.0 62.13 55.8 41.6 31.1 67.8 49.07
Desc. soup + offsets 100 64.1 91.5 87.7 60.7 66.9 80.4 19.9 64.4 43.6 48.3 64.5 62.79 56.5 42.6 31.8 69.3 50.05
Word soup 8 64.5 91.5 88.0 60.4 67.0 80.9 19.3 64.6 42.0 45.5 63.2 62.24 56.9 42.5 32.0 68.7 50.00

Open CLIP ViT-L/14

ZS 1 73.3 96.4 92.9 92.0 75.8 85.7 34.1 72.7 57.3 52.1 72.1 73.11 65.6 61.0 47.2 85.7 64.88
GPT score mean 5.8 73.6 96.7 92.8 91.2 76.5 85.3 33.7 72.7 58.6 51.6 71.7 73.08 66.1 61.2 47.5 85.1 64.96
Waffle CLIP 16 72.7 96.1 92.4 91.7 76.4 85.8 34.4 72.4 58.6 52.2 72.5 73.25 65.3 60.7 46.5 85.4 64.47
Desc. soup + offsets 100 74.0 96.6 92.8 92.0 76.3 85.5 34.5 72.7 59.1 50.0 72.3 73.19 66.0 61.9 48.7 86.6 65.81
Word soup 8 74.3 96.5 92.1 92.2 76.0 86.0 35.0 73.6 58.5 52.9 73.0 73.56 66.8 61.6 48.2 86.3 65.73

Open CLIP CoCa-L/14

ZS 1 75.1 97.6 93.8 92.7 77.3 87.5 36.6 73.6 57.2 58.5 73.4 74.82 67.5 63.5 53.8 87.0 67.94
GPT score mean 5.8 74.9 97.6 93.7 92.4 76.2 87.3 36.3 73.9 58.9 64.9 73.6 75.48 67.6 63.5 52.8 86.8 67.67
Waffle CLIP 16 75.0 97.5 93.9 92.7 77.3 87.5 37.4 73.1 57.5 63.0 73.9 75.37 67.5 63.8 52.8 87.3 67.85
Desc. soup + offsets 100 75.5 97.5 93.9 92.6 77.5 87.3 37.2 73.8 61.1 63.6 75.0 75.95 68.0 64.2 53.2 87.9 68.32
Word soup 8 75.9 97.5 93.8 92.8 77.8 87.7 38.4 74.1 60.5 63.5 74.7 76.08 68.8 64.0 54.3 87.9 68.73

Open CLIP ViT-g/14

ZS 1 77.7 97.7 93.6 93.5 81.6 90.0 44.1 74.3 65.3 55.8 80.0 77.58 70.4 66.4 59.7 89.0 71.37
GPT score mean 5.8 77.6 97.2 93.7 93.6 81.4 89.6 43.1 74.7 63.1 58.7 76.3 77.14 71.0 66.3 58.8 88.9 71.26
Waffle CLIP 16 77.3 97.8 93.5 93.7 81.3 89.8 44.1 74.1 65.8 58.0 78.9 77.72 70.1 65.9 59.0 88.9 70.99
Desc. soup + offsets 100 78.0 97.8 94.1 93.9 80.7 89.2 43.1 75.0 67.0 60.4 79.2 78.04 71.5 67.2 60.2 90.0 72.21
Word soup 8 78.4 97.6 93.7 93.9 81.4 89.8 44.0 75.0 66.0 60.0 79.5 78.09 71.6 67.1 60.0 89.6 72.05

Table 12. Detailed numerical results for different model scales. This is an expanded version of Table 5. Average of 3 trials.

	. Introduction
	. Related Work
	. Method
	. LLM Descriptors and WaffleCLIP
	. Descriptor Soup
	. Word Soup
	. Diversity loss

	. Results
	. Conclusion
	. Training details
	. Additional Word Soup Motivation
	. Token offset trick (for Descriptor Soup)
	. Centroid vs. Score Mean Evaluation
	. Additional Ablation Studies

