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Supplementary Material

Overview
In this supplementary material, we present more details and
more experimental results that are not included in the main
paper. The contents include:
• More experiment setup details in Sec. S-A.

• The metrics used for the evaluation in Sec. S-B.

• Evaluation on Automatic Annotation Pipeline in Sec. S-
C.

• Evaluation on 3DPW and LSPet in Sec. S-D.

• Impact of Data-Scale in Sec. S-E.

• More details about Collection Process in Sec. S-F.

• Additional Qualitative results in Sec. S-G.

S-A. Experiment Setup
Data Details. Building upon the work of previous stud-
ies [4], this research utilizes commonly used datasets such
as Human3.6M [5], COCO [12], MPII [1], and MPI-INF-
3DHP [15]. To ensure the quality of HardMo, we first dis-
card ineligible samples using various filtering methods fol-
lowing [4]. First, we discard the keypoints with confidence
less than 0.5. Then we discard samples with few 2D key-
points, unusual shapes, and unusual poses. Finally, we split
the remaining dataset by subject. For HardMo-Foot P2, we
choose jazz, Chinese dance, and ballet as the training set
and samba, waltz, chacha, and tango as the testing set. For
HardMo-Hand, training and testing are performed on the
same motion classes, e.g., jazziness. It is split by the sub-
ject, to ensure no overlap. Furthermore, to ensure the qual-
ity of the testing set, we also manually check some samples.

Keypoints Details. We use 2D keypoints in COCO-
WholeBody format [7, 19]. As shown in Fig. S-1, we use
joints indexed from 1 to 23 as body and foot keypoints. For
hand keypoints, we select every four joint indexed from 96
to 112 and from 117 to 133, e.g. 96, 100, and so on. Since
we use the SMPL [13] models, we discard the face key-
points.

Implement Details. Following [2], we train HMR [9] us-
ing an HRNet-W48 backbone [3, 16, 18]. We utilize a batch
size of 392 to train HMR and employ an AdamW [14] op-
timizer with a learning rate set at 1e-4, a weight decay set

Figure S-1. COCO-WholeBody Keypoints Format. Because
SMPL [13] is applied in this paper, we discard face keypoints. For
body and foot keypoints, joints indexed from 1 to 23 are selected.
For hand keypoints, we select every four joint indexed from 96 to
112 and from 117 to 133.

at 1e-4, β1 = 0.9 and β2 = 0.999. For different losses
and data augmentation, we use the same settings as 4DHu-
mans [4].

S-B. Metrics

For our evaluation, we use the metric as follows:

3D Metrics. Following previous work [4], we use MPJPE
and PA-MPJPE for 3D evaluation. MPJPE (Mean Per
Joint Position Error) is calculated as the mean L2 error
between the predicted joints and ground-truth joints after
aligning the root. PA-MPJPE (Procrustes analysis MPJPE)
is MPJPE after the alignment of the predicted joints with
ground-truth joints using the Procrustes Analysis.

2D Metrics. We follow [4], using the PCK as 2D evaluation
metrics. PCK denotes Percentage of Correct Keypoints. A
keypoint is deemed accurate if its Euclidean distance to the
ground-truth is less than a threshold. We choose different
thresholds (0.01 and 0.05 of image size).



Method
HardMo-Foot P1 HardMo-Foot P2

MPJPE↓ PA-MPJPE↓ PCK@0.01↑ PCK@0.05↑ MPJPE↓ PA-MPJPE↓ PCK@0.01↑ PCK@0.05↑

Body Foot Body Foot Body Foot Body Foot Body Foot Body Foot Body Foot Body Foot

HardMo-HMR (w/o OPT) 38.9 58.3 23.4 16.2 0.57 0.43 0.99 0.98 42.1 58.1 25.6 21.1 0.57 0.51 0.98 0.98
HardMo-HMR (w/ OPT) 23.6 34.9 15.4 10.8 0.71 0.58 0.99 0.99 27.5 39.5 17.7 13.2 0.67 0.60 0.99 0.99

Table S-1. Ablation study of Foot-Hardcase optimaztion process. (1) P1 is intra-class, P2 is inter-class. (2) OPT denotes the optimized
label.

Method
PCK@0.01 PCK@0.05

Body Hand Body Hand

HardMo-HMR 0.445 0.246 0.975 0.961
HardMo-HMR (w/ F.S.O) 0.616 0.285 0.987 0.975
HardMo-HMR (w/ S.S.O) 0.490 0.363 0.974 0.978
HardMo-HMR (w/ B.S.O) 0.543 0.362 0.976 0.978

Table S-2. Ablation study of the Hand-Hardcase optimization pro-
cess. F.S.O, S.S.O, and B.S.O represent first stage optimization,
second stage optimization and both stage optimization, respec-
tively.

Method
3DPW LSP-Extended

PA-MPJPE↓ MPJPE↓ PCK@0.05↑ PCK@0.1 ↑
4DHumansb 54.5 81.4 0.54 0.86
HardMo-4DHumans 54.4 80.9 0.82 0.84

Table S-3. Reconstruction error on 3DPW and LSP-Extended.

S-C. Evaluation on Automatic Annotation
Pipeline

Ablation Study. To validate the effectiveness of our auto-
matic annotation pipeline, we conduct ablation studies for
pseudo labels optimization on HardMo-Foot and HardMo-
Hand. We use HMR [9] trained on HardMo as our baseline,
and the detailed results are shown in Table S-1 and S-2.

For foot-hardcase, we train the HMR [9], following two
settings: (i) using the raw SMPL [13] annotations, denoted
as HardMo-HMR (w/o OPT); (ii) using the SMPL anno-
tations with optimization, denoted as HardMo-HMR (w/
OPT). As reported in Table S-1, the training with pseudo-
label optimization significantly improves the performance
of HMR [9] on HardMo-Foot P1, with body MPJPE de-
creasing by 15.3mm and foot MPJPE by 23.4mm compared
to the model without the pseudo labels optimization. The
above results prove the effectiveness of our optimization
process for foot-hardcase and the importance of precise la-
bels in solving hardcase. For hand-hardcase, the optimiza-
tion process is divided into two stages. To verify the effects
of both stages, we separately train the HMR model, follow-
ing four settings: (i) using the raw SMPL annotations; (ii)
F.S.O: using the SMPL annotations with the first stage opti-
mization; (iii) S.S.O: using the SMPL annotations with the
second stage optimization; (iv) B.S.O: using the SMPL an-
notations with both stages optimization. As reported in Ta-
ble S-2, HardMo-HMR w/ F.S.O increases the PCK@0.01-
body by 0.171 compared to the raw settings, proving the

Method PA-MPJPE↓ MPJPE↓
HardMo-4DHumans(w/o OPT) 41.5 64.0
HardMo-4DHumans(w OPT) 40.7 62.5

Table S-4. Reconstruction error on HardMo

effectiveness of our first-stage optimization in improving
the accuracy of body parts. HardMo-HMR w/ S.S.O in-
creases the PCK@0.01-hand by 0.117 compared to the raw
settings, demonstrating the crucial role of our second-stage
optimization in correcting hand hardcase. Moreover, HMR
w/ B.S.O increases the PCK@0.01-body by 0.053 to 0.543
compared to HardMo-HMR w/ S.S.O., and also almost no
change in the PCK@0.01-hand. It proves that the pseudo-
labels after both stages of optimization can improve hand
precision while minimizing the impact on the accuracy of
other body parts.

Reason for not optimizing on HardMo-Normal. In pre-
liminary experiments, we performed label optimization on
subsets of HardMo-Normal. We found that the improve-
ment is close to saturation when the subset reaches around
350k. This practice results in a marginal improvement of
only 0.8 in PA-MPJPE, which is quite limited. Moreover,
optimizing the whole HardMo-Normal requires about 6000
GPU hours. Considering the trade-off between overhead
and improvement, we thus opt to optimize labels only on
hardcase subsets.

Our decision was influenced by preliminary experiments
on a 350k subset of the training set. Table S-4 shows that
HardMo-4DHumans-350k (w OPT) slightly outperforms
HardMo-4DHumans-350k (w/o OPT) in HardMo-test. Fur-
thermore, optimizing the HardMo-Normal model requires
6000 GPU hours. Consequently, considering the mini-
mal impact of optimization, we opted not to optimize the
HardMo-Normal dataset.

S-D. Evaluation on 3DPW and LSPet

To validate the effectiveness of HardMo datasets, We also
conduct experiments on commonly used benchmarks such
as 3DPW or LSPet. The results are presented in Table S-
3. Our HardMo-4DHumans is on par with or outperforms
vanilla 4DHumans on both datasets. It indicates HardMo-
4DHumans not only performs well on Hardcase scenes, but
also performs well on common scenes.



S-E. Impact of Data-Scale
In this section, we validate how data scaling enhances per-
formance. We train the HMR model [9] with instances of
5.8M, 2.9M, and 1.4M. As reported in Fig. S-2, the HMR
trained with 5.8M instances achieves an MPJPE of 36.0mm,
showing a 16.3% improvement over the HMR trained with
1.4M instances on the HardMo test set. These results further
validate the effectiveness of data scale in boosting perfor-
mance. With the advantage of such large training instances,
HMR [9] can surpass the SOTA [4] on our benchmark.
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Figure S-2. Data Scaling up. As depicted, data scaling notably
enhances the performance of HMR [9]. When the training in-
stances are increased from 1.4M to 5.8M, there is a significant
reduction in MPJPE, decreasing from 43.0mm to 36.0mm.

S-F. Collection Process
As previously mentioned in the main paper, existing
datasets lack scenes of dance and martial arts, thus mak-
ing it difficult for SOTA methods to perform well within
these scenes. Additionally, all current methods struggle
with hand-hardcase and foot-hardcase, where the resulting
foot and hand poses often incorrectly resemble a T-pose.
Building on the insights mentioned above, we establish two
core principles for collecting the HardMo dataset: 1. Col-
lect videos with a wide range of dance and martial arts types
and diverse scenarios. 2. Place a special emphasis on the
hand and foot hardcase. Following these rules, our data col-
lection proceed as follows:

Initially, we identify 29 action categories for collection,
including 15 dance styles and 14 types of martial arts.
This categorization is based on existing dance datasets such
as AIST++ [11, 17] and augmented by suggestions from
LLM [6]. This category count is four times that of the
AIST++ dataset. Drawing from the categories mentioned
above, we gathered over 1,500 high-quality videos of dance

and martial arts from the internet. To ensure the quality of
the videos, we conduct a human check on the downloaded
content, eliminating any that did not meet our quality stan-
dards. Diversity of character and scenarios is indispens-
able for enhancing model performance in dance and mar-
tial arts. Therefore, during our search process, we devise a
set of prompts for both generic and specific action scenes,
such as practice rooms, outdoors, stages, and competition
venues. Additionally, to increase the proportion of foot-
hardcase samples in the dataset, we collect more videos of
ballet and jazz. After gathering these videos, we employ the
YOLOv8 [8] tracking algorithm to automatically filter out
leader and trailer segments without people and scenes with
overly crowded characters. Following the above strategy,
we gather a dataset named HardMo, consisting of over 7
million frames, labeled with 2D keypoints and SMPL anno-
tations. Moreover, through selection and optimization, we
establish two specialized subsets: a >500K HardMo-Foot
dataset and a >400K HardMo-Hand dataset.

S-G. Additional Qualitative results
In the main paper, we have provided the visualization of an-
notation on HardMo, Comparisons on unusual poses, and
Comparisons on Hardcase samples. In this section we pro-
vide additional qualitative results as follows:

Visualization of Annotation on HardMo. Figures S-
3 and S-4 present the visualization of SMPL [13] annota-
tions on HardMo-Hand and HardMo-Foot, respectively. As
shown, our SMPL annotations are highly precise. Crucially,
after our optimization process, we obtain annotations with
accurate hand and foot poses.

Comparisons on unusual poses. In Fig. S-5, we present
additional visualization results comparing HardMo-HMR
with existing methods. As reported, HardMo-HMR sur-
passes ProHMR [10] by a notable margin and achieves per-
formance on par with the state-of-the-art method 4DHu-
mans [4].

Comparisons on Hardcase samples. In Fig. S-6, we
provide additional qualitative results for tackling foot and
hand hardcase problems. Here, we compare HardMo-
4DHumans with existing methods. As reported, HardMo-
4DHumans solve the inherent hardcase problems compared
to the ProHMR [10] and 4DHumans [4]
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