Multiple View Geometry Transformers for 3D Human Pose Estimation

Supplementary Material

We present more implementation details and experiment
results in this supplementary.

A1l. Network Architectures

There are several MLP networks used in our model. We
present the detailed structures here. The feature dimension
of the appearance term is 256.

Network 1: gg(.) This network is used for estimating the
2D pose residuals in the appearance module. It has three
layers with their hidden dimensions being set to 256. We
use ReLU as the non-linear activation layer.

Network 2: f,(.) This network is used for feature fusion
as shown in Equation 4. It is an MLP with one linear layer
that maps the appearance term to a vector with the same
dimension.

Network 3: f,(.) This network is also used for feature
fusion as shown in Equation 4. It has two layers with their
hidden dimensions being set to 1024. We use ReLU as the
non-linear activation layer. There is also a residual branch.
We also use layer norm.

Network 4: fs(.) This network is for query classifier. It
is a linear layer that maps a vector with a dimension of L to
two scores followed by a sigmoid function with the output
representing the positive and negative probability, respec-
tively.

A2. Visualizations

Qualitative results on Shelf and Campus. We have visu-
alized some of the estimated results on the images from the
CMU Panoptic dataset in Figure 5. We also visualize the
results on the images from the Shelf and Campus datasets,
in Figure A1. Our method can accurately estimate the poses
for people in different postures even when severe occlusion
occurs in some views. While the results are nearly perfect
on the Shelf dataset, we notice that in the Campus dataset,
our method gets inaccurate estimates for the person in a
pink shirt (lower arm, yellow skeleton). This usually occurs
when the number of cameras is small and the body joints
are occluded in most views. We discuss the limitation in
Sec A7.

Results from Each Decoder Layer We visualize the 2D
and 3D pose estimations of 3 persons on the CMU Panoptic
dataset from each decoder layer in Figure A2. The geome-
try queries are refined from coarse initializations to accurate
poses through four transformer decoder layers.

A3. Camera Arrangements

We use different camera arrangements following [1]. We
show the details of the camera arrangements of CMUO-
CMU4 used in the generalization experiments in Table A1,
and visualize them in Figure A3. Among them, CMU2
and CMU3 are more challenging because they either have
a small number of cameras, or the cameras miss the other
side of views.

Ad. More Ablation Studies

Number of Cameras To further investigate the influence
of the number of cameras, we train the model on CMUO(7)
with two extra cameras on CMUQO as can be seen in Figure
A3 (b). Then we gradually decrease the number of cameras
and evaluate their performance in Table A2. Our method
is consistently better than VoxelPose, which validates its
strong generalization performance. More importantly, we
can see that AP100 barely changes when we decrease the
number of cameras from 7 to 4. In extreme cases, when
we only have two cameras available, AP100 of our method
is still reasonable considering the severe occlusions in the
dataset. It may be helpful to note that this experiment is
different from Table 1 in the main paper where the model is
trained on five cameras CMUOQ(5).

Loss weights of decoder layers As shown in Table A3,
“All layers” means adding loss to all four layers. “w/o de-
cay” means using the same loss weight for each layer with-
out weight decay. “Exp decay” means the loss weights de-
caying exponentially as 1,0.5,0.25,0.125 for the last layer
to the first layer, respectively. The idea is to tolerate the
errors in the earlier layers. “Linear decay” means the loss
weights decaying linearly as 1,0.75,0.5,0.25 for the last
layer to the first layer, respectively. We get the best per-
formance when adding the same weight loss to all the lay-
ers. The performance decreases dramatically when only
adding loss to the final layer, denoted by “Final layer”,
which shows it is important to add a supervision signal for
each layer for good convergence.

Denoise Training In the main experiments, we use uni-
form sampling to initialize geometry queries during both
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Figure A1l. Sample results on Shelf and Campus datasets.

Camera Arrangements Camera IDs Camera Num
CMU1 1,2,3,4,6,7,10 7
CMU2 12, 16, 18, 19, 22, 23, 30 7
CMU3 10, 12, 16, 18 4
CMU4 6,7,10, 12, 16, 18, 19, 22, 23, 30 10
CMUO 3,6,12,13,23 5
CMUO w/ 2 extra cameras 3, 6, 12, 13, 23, 10, 16 7
CMUO(K) First K cameras in CMUO w/ 2 K

Table Al. The details of the camera arrangements.

C ‘ VoxelPose [10] ‘ Ours
am Num
‘ AP25 AP100 MPIJPE ‘ AP25 AP100 MPJPE

7 89.8 98.3 16.1 95.3 99.5 14.6
6 87.1 98.0 17.1 94.5 994 15.2
5 68.7 84.8 18.9 91.1 99.2 17.0
4 35.8 80.8 25.1 75.6 98.9 21.0
3 1.8 40.6 67.4 351 94.3 36.3
2 0.0 2.1 164.7 1.9 35.7 97.0

Table A2. Ablation study on the number of cameras. Both models are trained on CMUO(7).

training and inference. Here we explore another method for
initialization during training. In particular, we add noises to
the ground truth poses with a sigma of ¢ and use the noised
poses as the initialized queries. This method is denoted by
“GT Noise ¢”. During inference, we use the output of Vox-

elPose to initialize the queries. As shown in Table A4, our
system can boost up the AP25 of VoxelPose from 85.3% to
92.7% under “GT Noise 20, which is also slightly higher
than the sampling-based initialization. It proves that our
system has a higher accuracy when given an accurate ini-
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Figure A2. Progressive refinement of the 2D and 3D poses over
four decoder layers. The outputs from Layer 1 to Layer 4 are
shown from top to bottom. The images of Camera 1 to Camera
4 and the 3D pose are shown from left to right. Black and colorful
skeletons denote the GT and estimated poses, respectively.

Configurations AP25 AP100 MPJPE

All layers w/o decay 92.3 99.3 16.0
All layers w/ Exp decay 91.2 99.0 17.2
All layers w/ Linear decay ~ 90.4 99.0 17.0
Only final layer 0.2 57.0 96.1

Table A3. Adding weight decay among decoder layers.

Model Training Init Infer Init ~ AP25
VoxelPose / / 85.3
Ours GT Noise 200  VoxelPose 90.3
Ours GT Noise 100  VoxelPose 914
Ours GT Noise 50 VoxelPose 924
Ours GT Noise 20 VoxelPose 92.7
Ours Sampling Sampling 92.3

Table A4. Denoise training experiments. During training, we ini-
tialize with noisy ground truth poses; during inference, we initial-
ize with VoxelPose. We can further improve the results of Voxel-
Pose.

tialization, and can act as a refiner to further improve the
performance of other human pose estimation methods.

Parameters Sharing Since all decoder layers share the
same goal of refining the 2D and 3D poses, we evaluate

Decoder Layer AP25 AP100 MPJPE
Independent 92.3 99.3 16.0
Sharing 85.5 98.1 19.0

Table AS. Ablation on parameter sharing for decoder layers.

FFN AP25 AP100 MPJPE

w/ 92.3 99.3 16.0
w/o  88.6 99.0 17.6

Table A6. Ablation study of the MLP f.(.) in Feature Fusion.

whether we can use the same parameters for them which
can reduce the number of parameters. As shown in Ta-
ble A5, if we share the parameters, the performance de-
creases significantly in terms of AP25. But for AP100, it
barely changes. The results suggest that using independent
parameters is helpful to improve estimation precision. The
front and last layers tend to learn different focuses for coarse
and fine updates.

The MLP in Feature Fusion As shown in Table A6,
when adding the MLP f,, in the feature fusion process, the
accuracy can be further improved.

AS5. Camera Parameters

Camera parameters including the extrinsic poses and intrin-
sic matrix are needed for triangulation. Camera parame-
ters are practical to get in real applications. For scenar-
ios like surveillance where cameras are fixed, a one-time
camera calibration [9] can provide the poses and intrinsic.
There are also online calibration methods [6, 7] to estimate
camera poses dynamically. Since the camera calibration is
well studied in the literature and is out of the scope of this
paper, we assume the camera pose is known and use the
provided parameters in the datasets following the common
practices in the literature [10, 11]. All the baselines assume
the camera poses are provided, so we have a fair compari-
son to them and can highlight the performance improvement
brought by our model generalization ability.

A6. Computation Analysis

We show parameter counts, flops (evaluated by MACs), and
running times in Table A7. Ours has the fewest parameters
among the 3 methods and comparable MACs with MvP. We
use a single V100 GPU for inference. Ours needs 0.21s for
each inference, which is faster than VoxelPose, which needs
0.29s. Ours lies inside a 19% range with MvP which needs
0.17s. A more efficient query sampling strategy remains in
future work.
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Figure A3. Visualization of the camera arrangements of sequences CMUO to CMU4.

Param M) MACs (G) Time (ms)
MvP 42.6 567.0 169.5
VoxelPose 40.6 972.2 291.3
Ours 37.6 639.7 205.1

Table A7. Computation analysis.

A7. Limitation and Future Work

As can be seen from the visualizations in Figure Al (the
lower arm of the yellow skeleton on Campus dataset is in-
accurate), our method suffers when the number of camera
views is extremely small and the body joints are severely
occluded in most views. This is because our system relies
on triangulation which requires accurate 2D positions in at
least two views to recover the 3D position accurately. Note
that this also poses challenges for other methods and our
method actually performs better than them. Some methods
such as VoxelPose are slightly more robust to occlusion be-
cause they use 3D convolutions to mix the features of all
joints, which allows to make coarse predictions for the oc-
cluded joints based on the visible ones. Inspired by that, one
possible way to enhance our method is to use robust struc-
tural triangulation [2] instead of the current keypoint-wise
triangulation [5] to explore the dependency among all joints
to help estimate the occluded joints. Besides, we can take
advantage of the constraints from the scenes and human in-
teractions [4] to further improve the accuracy. Finally, it
will be interesting to extend the Transformer architecture
into a video-based system [3, 8, 12, 13] which further fuses
temporal information for robust tracking.
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