
In the supplemental materials, we provide the theoreti-
cal analysis in Appendix A, and the additional experimental
details in Appendix B.

A. Theoretical Analysis
A.1. Optimization Consistency of Model Deviation

In the following, we provide the theorem related to opti-
mization consistency of model deviations. When the aggre-
gating weights, i.e., p, achieve optimal, the model deviation
rate is equally contributed to global updating.

Theorem 3 (Optimization consistency of model devia-
tions). Rethinking the Lagrangian of dual form in Eq. (10),
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Therefore, the global model updates with a direction that
balances all model deviation change rates, obtaining consis-
tent parameters for server and client models.

A.2. Bound of Client Model Divergence

In this part, we first introduce mild and general assump-
tions [23], and induct the model updating divergence bound
for each client.

Assumption 5. Let Fk(θ) be the expected model objective
for client k, and assume F1, · · · , FK are all L-smooth, i.e.,
for all θk, Fk(θk) ≤ Fk(θk) + (θk − θk)
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Next, we introduce the lemma related to the bound of
client model divergence.

Lemma 2 (Bound of Client Model Divergence). With as-
sumption 8, ηt is non-increasing and ηt < 2ηt+E (learning
rate of t-th round and E-th epoch) for all t ≥ 0, there exists
t0 ≤ t, such that t − t0 ≤ E − 1 and θt0

k = θt0 for all
k ∈ [N ]. It follows that
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Proof. Let E be the maximal local epoch. For any round
t > 0, communication rounds from t to t0 exist t − t0 <
E − 1. and the global model θt0 and each local model θt0

k

are same at round t0.
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where the Eq. (17b) holds since E(θt
k − θt0) = θt − θt0 ,

and E∥X − E(X)∥ ≤ E∥X∥, and Eq. (17d) derives from
Jensen inequality.

A.3. Convergence Error Bound

Definition 1 (Heterogeneity Quantification [23]). Let F ∗

and F ∗
k be the minimum values of F and Fk, respectively.

We use the term Γ = F ∗ −
∑N

k=1 pkF
∗
k for quantifying

the degree of non-IID. If the data are IID, then Γ obviously
goes to zero as the number of samples grows. If the data are
non-IID, then Γ is nonzero, and its magnitude reflects the
heterogeneity of the data distribution.

Theorem 4 (Convergence Error Bound). Let assumptions
5-8 hold, and L, µ, σk, V be defined therein. Let κ =
L
µ , γ = max{8κ,E} and the learning rate ηt = 2

µ(γ+t) .
The FedU2 with full client participation satisfies
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where B = 4(E − 1)2V 2 +K + 2Γ.

Proof. By L-smooth assumption 5, we can obtain:
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By Cauchy-Schwarz inequality and AM-GM inequality, we have
inequality of the first term of Eq. (20):
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where the last inequation holds due to λE < 1 and ∥p∥ ≤ K. By
combining Eq. (21)-(23) and Lemma 2, it follows that
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Lastly, let Dt = E∥θt − θ∗∥2, it follows that
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Recall Eq. (18), we finally catch:
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As we can see, FedU2 similarly converges to a generalization error
bound as the FedAvg-like FL model with non-IID data. Discrimi-
natively, benefiting from the optimization of EUA, the communi-
cation round multiplies with a smaller B.

B. Experimental Supplementary
B.1. Hyper-parameter Sensitivity Analysis

In the following, we study the sensitivity of remaining
highly relevant hyper-parameters, i.e., the effect of client
numbers and local epochs. Specifically, we compare
FedU2-SimCLR and its runner-up method, i.e., FedX-
SimCLR, on CIFAR10 α = 0.1, by varying the local epochs
E = {5, 10, 20, 50} in Fig. 7 and the number of clients
K = {5, 10, 20, 50, 100} in Fig. 8. We train all models
until converge to obtain fairly comparable results. As we
can see: (1) With the increase of local epochs, each client
of FedX-SimCLR obtains a better-performing model, while
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Figure 7. The effect of local epochs E (on CIFAR10 α = 0.1).
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Figure 8. The effect of client number K (on CIFAR10 α = 0.1).

each client of FedU2-SimCLR is insensitive. This states
that FedU2 balances the client model deviation change rate
in EUA, bringing the benefits of quick convergence. (2) The
performance of all methods decreases when the number of
clients increases, but FedU2-SimCLR consistently outper-
forms FedX-SimCLR. It validates that enhancing uniform
and unified representations will make FUSL methods more
generalizable to the cases of various participants amounts.

B.2. Enlarged Figures in Visualization

In our main paper, we depict the top-k singular values of co-
variance matrix representations in Fig. (3), the correspond-
ing 3-D representation in Fig. (4), and the distribution of
data representation in Fig. (5) between global model and
randomly sampled local models. The purpose of the above
figures is to illustrate the representation enhancement of
FedU2. In Fig. 9-11, we enlarge these figures to explore
the detailed comparisons. In terms of Fig. 11, FedU2 keeps
the unified representation between global and local models
as well as clearer decision boundary for each class.



Figure 9. Top k log singular values of the covariance matrix of global model (left) and local model (right) representations.
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(b) FedDecorr
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(d) FedU2

Figure 10. The representations collapse issue on the sphere using BYOL model (on CIFAR10 α = 0.1 Cross-silo). The more blank
representation space, the more severe collapse issue is.
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Figure 11. The distributions of data representations using global and local BYOL model (on CIFAR10 α = 0.1 Cross-silo).
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