
VINECS: Video-based Neural Character Skinning

Supplementary Material

Zhouyingcheng Liao1,2 Vladislav Golyanik1 Marc Habermann1,3 Christian Theobalt1,3

1Max Planck Institute for Informatics, Saarland Informatics Campus 2The University of Hong Kong
3Saarbrücken Research Center for Visual Computing, Interaction and AI

In the following, we show quantitative and qualitative
comparisons against ARAH [18] and TAVA [9] (Sec. A).
Then, we provide more details concerning our method
(Sec. C-F). We also provide additional information about
how the competing approaches are trained and evaluated
(Sec. G). Moreover, we provide more qualitative results
that compare our design choice of using NeuS [17] for
template generation with classical multi-view stereo re-
construction [2] (Sec. I). Lastly, we demonstrate that our
method can pose template meshes of varying resolution
without re-training (Sec. J).

A. Additional Comparisons
We compare VINECS against ARAH [18] and TAVA [9],
which are animatable human volume rendering methods,
on the subjects D2 and D5. We provide the quantitative
results in Tab. 1 and the qualitative results in Fig. 1. The
evaluation protocol is the same one as described in the
main manuscript. Their reconstruction error is significantly
higher than the one of VINECS. Interestingly, their error is
also higher compared to using initial skinning weights. We
found two major reasons for this: 1) The DynaCap dataset
[6] is significantly more challenging than the datasets used
for evaluation in their works, and their methods seem to not
scale well to more complex conditions (motions, lighting).
2) For TAVA, we found that they use a density-based rep-
resentation for which it is hard to extract accurate geome-
try. In contrast, our approach can scale well and achieves a
higher accuracy.

We would also like to highlight that their setting and goal
is different from ours. Their goal is to obtain an implicit an-
imatable human model for volume rendering, whilst ours is
to obtain pose-dependent skinning for explicit human ani-
mation.

B. Normal Consistency
We evaluate normal consistency and show results in Table 2.
We highlight that oversmoothed results have higher nor-
mal consistency than high-frequency results that are slightly
misaligned in image space. This explains the less pro-
nounced improvement compared to SCANimate (requiring
4D scans). Nonetheless, results are coherent with the obser-
vations in the main paper, i.e., our method demonstrates a
clear improvement.

C. Human Parsing Labels

To obtain the per-vertex human parsing labels, we first ap-
ply a 2D human parsing method [8] pre-trained on the LIP
dataset on renderings from multiple views. More specifi-
cally, we render the template mesh for one frame, animated
by the initial skinning weights colored by the texture ob-
tained by NeuS [17]. We apply ambient lighting for the
rendering. We found for certain views, especially views
from the top, the human parsing method often failed. Thus,
we discarded such views. Then, we run the human pars-
ing method for the rendering of the remaining views. For
each view, we can obtain a label for each vertex by finding
the label of the nearest 2D pixel from its projection, and we
perform max-voting to obtain the final label. Note that if
the label with the most votes is the background, we select
the label with the second most votes instead. After that, we
iteratively run a mode filter within one-ring neighborhood
until no vertex is labeled as the background. Originally, the
method of Li et al. [8] predicts 20 classes. We merge these
classes and only keep two classes for our training, i.e., the
skin and the clothes.

D. Network Architectures

All the neural networks used in this paper, namely Skin-
Net, AlbedoNet, and ReflectanceNet, are based on the
coordinate-based multi-layer perceptrons (MLP) sharing
the same set of hyper-parameters. The network contains five
layers with 256,256,128,256 and 256 neurons in them, re-
spectively. There is a skip connection from the input to the
third layer. Inspired by [5], we use SoftPlus as the activa-
tion function. When the query point is fed into the network,
we compute its positional encoding [12] and concatenate it
with the 3D coordinate. In addition, we re-parameterize the
network weights using the weight normalization [14].

For SkinNet, a SoftMax layer is applied on the output of
the MLP, along the dimension of joints, to ensure that the
output skinning weights satisfy the partition of unity. For
ReflectanceNet and for AlbedoNet, there is no processing
of the output during training, while during inference, we
clip the values so that they are in the range [0;1]. As for the
output of ReflectanceNet, we compute its exponential as the
final scalar multiplier.



Quantitative Geometry Comparison
Subject D2 D5
Method Chamfer↓ M2S↓ S2M↓ Chamfer↓ M2S↓ S2M↓

Initial weights [3] 3.760 2.162 1.599 5.077 2.811 2.267
ARAH [18] 3.086 1.791 1.294 4.900 2.746 2.153
TAVA [9] 5.369 3.017 2.351 6.823 3.714 3.109

Ours 3.034 1.746 1.288 4.512 2.442 2.070

Table 1. We further compare our method to ARAH [18] and TAVA [9] on D2 and D5. As a reference, we also show the results with initial
skinning weights obtained from Pinocchio [3]. Our method clearly outperforms both approaches and the baseline as TAVA [9] leverages a
density-based surface representation that usually fails to model high quality geometry, and both cannot scale to the more difficult DynaCap
dataset, which contains significantly more frames and pose variations as the dataset used in their work.

GT Pinocchio ARAH TAVA Ours

Figure 1. Qualitative comparison. For each method, we visualize the recovered posed geometry as well as the per-vertex error map when
comparing the ground truth in terms of M2S. Note that our method consistently shows the lowest error and also has the least visual artifacts.

Subject D2 D5 V6
Pinocchio 0.516 0.354 0.561

SCANimate* 0.543 0.401 0.599
RigNet 0.499 0.319 0.544
Ours 0.554 0.405 0.588

SCAnimate 0.565 0.439 0.641
Table 2. Normal consistency. Higher values mean better consis-
tency.

E. Silhouette Loss

It is a bidirectional loss, which aims to align the projected
boundary of the mesh to the foreground mask M:

Lsilh =
C

∑
c=1

( ∑
i∈Bc

∥ dc(πc(xi)) ∥2 +

+ ∑
p∈{u∈R2∥dc(u)=0}

∥ πc(xp)−p ∥2). (1)

Specifically, the first term pushes boundary vertices Bc to
the boundary of the foreground mask, where the distance
transform value dc equals zero. In the second term, we min-
imize the distance between every pixel p on the zero con-
tour of the distance transform map and its closest projected
vertex xp.



F. Training Details

We implement our method using TensorFlow [1]. All ex-
periments are performed on a single NVIDIA A40 GPU
(48GB). Our training consists of four stages. During the
first stage, we train SkinNet alone without the rendering loss
for 50000 iterations. Next, we train AlbedoNet for 5000
iterations and ReflectanceNet for 5000 iterations. Lastly,
SkinNet is refined with the pre-trained appearance field for
20000 iterations. The whole training takes around 18 hours.

For all training stages, the network weights are opti-
mized using Adam [7]. We clip the gradient values to
[−1,1]. The learning rate is 0.001 and the batch size is 4.

G. Competing Methods

Pinocchio [3]. We re-implement Pinocchio using Python.
Since in our work, the skeleton is obtained from [15], we
only use its skin attachment part to compute the skinning
weights based on the skeleton. We use the library SciPy [16]
to solve the sparse linear system for the heat equilibrium
equation in Pinocchio.

SCANimate [13]. SCANimate requires the registered
SMPL [10] pose and shape parameters for all training scans.
As we already had the pose tracking of the training se-
quence, we can animate our template mesh using the ini-
tial skinning weights, and the animated meshes can roughly
align the scans. Thus, we manually label 30 correspondence
points between our template mesh and SMPL template and
optimize SMPL parameters by fitting to the correspondence
points on our animated template mesh. With the paired scan
and SMPL parameter, we train SCANimate for each of our
characters.

SCANimate* [13]. Since the focus of our paper is to
learn the skinning weights, instead of the pose-aware shape,
we test SCANimate without the pose-aware shape. More
specifically, during inference, we input the canonical pose
parameter to the pose-dependent geometry module to obtain
a canonical shape, which we keep constant for all poses. We
use this canonical shape as the query for the forward skin-
ning network to obtain the skinning weights, which then
animates the canonical shape by LBS.

RigNet [19]. We ran RigNet pre-trained on
“ModelsResource-RigNetv1” dataset on our template mesh
to obtain the skinning weights. Similar to Pinocchio, we
only use the skinning prediction module, which takes a
mesh and the aligned skeleton and predicts the skinning
weights.

ARAH [18]. We train ARAH using the same hyper-
parameter settings as in their public codes. It is trained for
1.5 days on 4 NVIDIA A40 GPUs, which is much more ex-
pensive than the training of VINECS. We extract the mesh
from the SDF of ARAH using Marching Cube [11] with the
resolution of 2563.

Figure 2. We apply the same checkerboard texture [4] to our re-
sults of different poses. It can be seen clearly that our results well
preserve the geometric fidelity of the mesh.

TAVA [9]. We train TAVA following the same setting
as in their public code. The whole training takes 30 hours
on a single NVIDIA A40 GPU. The mesh is extracted from
the density field using Marching Cube with the resolution
of 2563.

H. Rendering with Checkerboard Texture
To better visualize the surface deformation, we additionally
render our results with a checkerboard texture. We manu-
ally unwrap the canonical mesh into the UV space and apply
the checkerboard texture. Then, we keep the UV unwrap-
ping and apply the same checkerboard texture to different
poses. As shown in Figure 2, our results well preserve the
geometric fidelity of the mesh, ensuring that the checker-
board texture remains uniformly distributed across the sur-
face without noticeable distortion.

I. MVS vs. NeuS
We choose NeuS instead of classical multi-view stereo re-
construction to extract the template mesh because we found
in most cases NeuS generates more high-frequency details
while introducing less noise (see Fig. 3).

J. Multi-resolution Results
Our method supports multi-resolution character skinning
because SkinNet is an implicit function and can take arbi-
trary 3D positions as input. During training, we only input
the vertices of the template mesh, which has a fixed reso-
lution of around 10K vertices, to SkinNet, because our su-
pervision requires an explicit mesh. However, even though
only trained on a fixed resolution, our method generalizes
well to different resolutions. We re-sample the original
mesh generated by NeuS to different numbers of vertices
(1K, 5K, 10K, 50K). Then, they are fed into the same pre-
trained model and animated. All meshes deform naturally
and have low 3D errors (Fig. 4).

Thus, in practice, we query the spatial point at vertex
level, which suffices for supervising our skinning weights



M
V

S
N

eu
S

Figure 3. NeuS [17] (top) vs. Multi-view stereo reconstruction [2]
(bottom). In most cases, NeuS generates more high-frequency de-
tails (cloth wrinkles) while introducing less noise (e.g., around the
calf).

field during training. However, we would like to empha-
size that our model is invariant to specific mesh connectiv-
ity and resolution during inference, i.e. we do not require
transferring per-vertex skinning weights from one specific
mesh to another one as skinning weights can be continu-
ously queried due to the field-based formulation.

References
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Is-
ard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-
junath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org. 3

[2] Agisoft. PhotoScan. http://www.agisoft.com,
2016. 1, 4

[3] Ilya Baran and Jovan Popović. Automatic rigging and ani-

No. of 

vertices

1K

5K

10K

50K

Template 

mesh

Error 

map

Predicted 

skinning

Animated 

mesh

Figure 4. Multi-resolution results of our method. Even though
trained on the fixed resolution (10K), our method generalizes well
to other resolutions. Note that for different resolutions, the pre-
dicted skinning weights are very similar and the error always stays
low.

mation of 3d characters. ACM Trans. Graph., 26(3), 2007.
2, 3

[4] NewTek Forums. UV map - Generator. https:
/ / forums . newtek . com / threads / uv - map -
generator.167156, 2024. 3

[5] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. In Proceedings of Machine Learning and Systems
2020, pages 3569–3579. 2020. 1

[6] Marc Habermann, Lingjie Liu, Weipeng Xu, Michael Zoll-
hoefer, Gerard Pons-Moll, and Christian Theobalt. Real-time
deep dynamic characters. ACM Trans. Graph., 40(4), 2021.
1

[7] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. International Conference on Learn-
ing Representations, 2014. 3

[8] Peike Li, Yunqiu Xu, Yunchao Wei, and Yi Yang. Self-
correction for human parsing. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020. 1

[9] Ruilong Li, Julian Tanke, Minh Vo, Michael Zollhofer, Jur-
gen Gall, Angjoo Kanazawa, and Christoph Lassner. Tava:
Template-free animatable volumetric actors. 2022. 1, 2, 3

[10] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-

http://www.agisoft.com
https://forums.newtek.com/threads/uv-map-generator.167156
https://forums.newtek.com/threads/uv-map-generator.167156
https://forums.newtek.com/threads/uv-map-generator.167156


ard Pons-Moll, and Michael J. Black. SMPL: A skinned
multi-person linear model. ACM Trans. Graphics (Proc.
SIGGRAPH Asia), 34(6):248:1–248:16, 2015. 3

[11] William Lorensen and Harvey Cline. Marching cubes: A
high resolution 3d surface construction algorithm. ACM SIG-
GRAPH Computer Graphics, 21:163–, 1987. 3

[12] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In Computer Vision – ECCV 2020, pages 405–421,
Cham, 2020. Springer International Publishing. 1

[13] Shunsuke Saito, Jinlong Yang, Qianli Ma, and Michael J.
Black. SCANimate: Weakly supervised learning of skinned
clothed avatar networks. In Proceedings IEEE/CVF Conf. on
Computer Vision and Pattern Recognition (CVPR), 2021. 3

[14] Tim Salimans and Durk P Kingma. Weight normalization:
A simple reparameterization to accelerate training of deep
neural networks. Advances in neural information processing
systems, 29, 2016. 1

[15] TheCaptury. The Captury. http://www.thecaptury.
com/, 2020. 3

[16] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wil-
son, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J.
Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey,
İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, De-
nis Laxalde, Josef Perktold, Robert Cimrman, Ian Henrik-
sen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt,
and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python. Nature Methods,
17:261–272, 2020. 3

[17] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
NeurIPS, 2021. 1, 4

[18] Shaofei Wang, Katja Schwarz, Andreas Geiger, and Siyu
Tang. Arah: Animatable volume rendering of articulated
human sdfs. In Computer Vision – ECCV 2022: 17th Euro-
pean Conference, Tel Aviv, Israel, October 23–27, 2022, Pro-
ceedings, Part XXXII, page 1–19, Berlin, Heidelberg, 2022.
Springer-Verlag. 1, 2, 3

[19] Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Lan-
dreth, and Karan Singh. Rignet: Neural rigging for articu-
lated characters. ACM Trans. on Graphics, 39, 2020. 3

http://www.thecaptury.com/
http://www.thecaptury.com/

	. Additional Comparisons
	. Normal Consistency
	. Human Parsing Labels
	. Network Architectures
	. Silhouette Loss
	. Training Details
	. Competing Methods
	. Rendering with Checkerboard Texture
	. MVS vs. NeuS
	. Multi-resolution Results

