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Supplementary Material

We start with Appendix 1, which shows the algorithmic
description of our framework and theoretical analyses of
staged editing. Next, in Appendix 2, we show some more
comparisons with current SOTAs and editing on more iden-
tities. Moreover, Appendix 3 provides the effects of different
stage configurations and the effects of varying text prompts.
Lastly, we provide additional implementation details in Ap-
pendix 4. We show additional qualitative results in Fig. 5∼9.

1. Theoretical Analysis
An overview of our method is provided in the main pa-
per. Moreover, the algorithmic description of our method is
summarized in 1.

1.1. Frequency of Predicted Noises

To demonstrate that images with higher frequencies can
be manipulated more efficiently, we measure the change
in the uniformity and smoothness of their frequency spec-
trum (Eq. 1) upon introducing random disturbances. Uni-
formity, quantified by entropy and coefficient of variation,
assesses the even distribution of frequency components, and
smoothness, measured by the standard deviation, reflects the
gradual variation in these components across the spectrum
[1]. Fig. 1 reveals that disturbances at time step 35 introduce
significant changes in uniformity and smoothness, whereas
disturbances at time step 5 are less impactful.
Editing Stage (𝑡 = 35): At this stage, the original image ex-
hibits a high degree of noise, lacking any identifiable charac-
teristics. The frequency spectrum’s magnitude is relatively
even, indicating a greater degree of randomness suitable for
more impactful edits. The disturbances introduced lead to
higher increases in entropy and variation, which facilitates
more effective modifications without altering the image’s
core identity or context.
Boosting Stage (𝑡 = 5): As the diffusion process progresses,
the magnitude spectrum shows a concentration of energy in
the low-frequency region (center of the spectrum), indicat-
ing the presence of more defined features and less high-
frequency noise. The introduction of disturbance at this
stage results in a lower increase of entropy and variation,
indicating less intense manipulations. Hence, editing at this
stage should be more conservative to maintain the image’s
integrity and recognizable features.
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Algorithm 1 The Framework of Staged Editing
Input: A pretrained diffusion model 𝜃 with its decoder 𝜓,
a set of images X of an identity (2∼4 images), source and
target prompts (c(0) , c(1) ), the default weight factor 𝜆′, and
any inference image xsource of this identity
Output: The edited image xedit

1: // Training a HyperNetwork Υ for weights generation
2: Υ̂← min𝜃Υ LHyperDreambooth (X); ⊲ Eq. 5
3: // Obtain the personalized weights 𝜃per for xsource
4: 𝜃per ← Υ̂(xsource);
5: // Replace attention weights in 𝜃 with 𝜃per
6: 𝜃 ← Loading(𝜃per)
7: // Compute the covariance guidance
8: CovDiff = Normalize(max𝑖 or 𝑗 |Covc(1) − Covc(0) |)
9: for 𝑡 ∈ [𝑇,𝑇 − 1, . . . , 1, 0] do

10: if 𝑡 ≥ 𝑡edit then
11: // During the editing stage; z is the latent codes
12: 𝜆init

𝑡 = Normalize(FFT(𝜓(z𝑡 )))
13: ĉmixed

𝑡 = CovDiff ⊙
(
(1 − 𝝀init

𝑡 )c(0) + 𝝀init
𝑡 c(1)

)
14: z𝑡−1 =

√
𝛼𝑡−1P(𝜖 𝜃𝑡 (z𝑡 , ĉmixed

𝑡 )) +D(𝜖 𝜃𝑡 (z𝑡 , ĉmixed
𝑡 ))

15: else
16: // After the editing stage
17: 𝜆init

𝑡 = 𝜆′

18: ĉmixed
𝑡 = (1 − 𝝀init

𝑡 )c(0) + 𝝀init
𝑡 c(1)

19: if 𝑡 > 𝑡boost then
20: // Same formula as in step 10
21: z𝑡−1 =

√
𝛼𝑡−1P𝑡 + D𝑡

22: else
23: // During boosting stage
24: z𝑡−1 =

√
𝛼𝑡−1P𝑡 + D𝑡 + 𝜎𝑡z𝑡

25: end if
26: end if
27: end for
28: xedit = 𝜓(z0)
29: return xedit

where 4, 64, 64 are the dimensions of latent codes z.

1.2. Gradient-Guided Boosting Stage

In a diffusion model, the process of adding noise and then
reversing it is characterized by how the image changes at
each timestep. For stochastic denoising, randomness is in-
troduced into the reversal process, which can lead to the
accumulation of errors if not controlled properly. To inspect
how gradients with respect to noise prediction influence er-
ror accumulation, we begin with the reverse process in the



Figure 1. Frequency Spectrum Analysis upon Disturbance Intro-
duction: This figure illustrates the effects of random disturbances
on the uniformity and smoothness of the frequency spectrum at
different time steps. The left panel shows time step 35 with greater
changes in entropy, variation, and deviation, indicating a higher
manipulation sensitivity.

presence of stochastic denoising:

𝑥𝑡−1 = 𝜖𝜃 (𝑥𝑡 , 𝑡) + 𝜎𝑡𝜖𝑡 , (2)

where:
• 𝜖𝜃 (𝑥𝑡 , 𝑡): the denoising function that predicts the noise-

free image from the noisy input 𝑥𝑡 at timestep 𝑡.
• 𝜎𝑡 : the variance of the reverse process.
• 𝜖𝑡 : a standard Gaussian random variable, representing the

stochastic component of the denoising process.
Now, consider the gradient of the predicted noise with

respect to the noisy image 𝑥𝑡 , denoted by ∇𝑥𝑡 𝜖𝜃 (𝑥𝑡 , 𝑡). This
gradient reflects how sensitive the noise prediction is to
changes in 𝑥𝑡 . When this gradient is large, a small change in
𝑥𝑡 can lead to a large change in the noise prediction, which
can cause significant changes in the pixel values and result
in error accumulation. The error introduced at each timestep
can be quantified by the expected squared difference between
the denoised image 𝑥𝑡−1 and the true noise-free image 𝑥0:

𝐸 [∥𝑥𝑡−1 − 𝑥0∥2] . (3)

The change in this error as we move from timestep 𝑡 to
𝑡 − 1 can be approximated by a Taylor expansion around 𝑥𝑡 :

Δ𝐸𝑡 ≈ ∇𝑥𝑡𝐸 [∥𝑥𝑡 − 𝑥0∥2]⊤ (𝜖𝜃 (𝑥𝑡 , 𝑡) − 𝑥𝑡 )

+ 1
2
𝜎2
𝑡 Tr(∇2

𝑥𝑡
𝐸 [∥𝑥𝑡 − 𝑥0∥2]).

(4)

The first term represents the deterministic part of the
error change, which is directly influenced by the gradient
∇𝑥𝑡 𝜖𝜃 (𝑥𝑡 , 𝑡). The second term, involving the trace of the
Hessian, represents the stochastic part of the error change,
which is scaled by 𝜎2

𝑡 . To minimize error accumulation,
we want the change in error Δ𝐸𝑡 to be as small as possible.

If ∇𝑥𝑡 𝜖𝜃 (𝑥𝑡 , 𝑡) is small, then the deterministic part of Δ𝐸𝑡

will be small. Furthermore, by carefully choosing 𝜎𝑡 , we
can ensure that the stochastic part of Δ𝐸𝑡 does not introduce
significant error.

Therefore, the goal is to find the point in the diffusion
process where ∇𝑥𝑡 𝜖𝜃 (𝑥𝑡 , 𝑡) is small, which corresponds to
the time when the predicted noise is less sensitive to changes
in 𝑥𝑡 . This point is ideal for applying stochastic denoising,
as it minimizes the risk of error accumulation and ensures
that content is not significantly modified during the boosting
stage. This theoretical foundation underlies the practice of
choosing the appropriate timing for noise introduction to
maintain the fidelity of the image’s content.

2. More Experimental Details
2.1. The List of Prompts

For qualitative and quantitative evaluation, we employ the
editing prompts listed in Tab. 1, which contains 20 editing
prompts for each subject.

2.2. More Comparisons to Current SOTAs

In the main paper, we compare the image editing perfor-
mance of various methods using a collection of human face
images and textual prompts. For this set of images and
prompts, Fig. 5 combines them one by one to more fully
demonstrate the results achieved by our method.

Extending the comparison in the main paper, Fig. 6
presents a similar evaluation with the same identities but
with alternative prompts. The results are consistent with the
comparisons shown in the main paper, which demonstrates
that our approach is able to preserve the integrity of the
identity and context while performing the requested manip-
ulations. Additionally, Fig. 7 displays the combinations of
identities and prompts w.r.t. Fig. 6.

2.3. Fine Editing on Diverse Identities

The effectiveness of our method is showcased by its preci-
sion in editing while maintaining the subject’s identity and
context. This capability is crucial for applications demand-
ing the subject’s essence to remain unchanged despite edits.
Fig. 8 demonstrates this, where edits on various identities
correspond to the comparison in the main paper. Each edited
image retains the unique characteristics that define the indi-
vidual’s identity, such as facial structure, skin texture, and
inherent expression, while seamlessly integrating the speci-
fied alterations.

DreamSalon’s robustness across different identities and
prompts highlights its sophisticated handle on diverse hu-
man features, ensuring dependable results. This generaliz-
ability confirms the method’s strength and real-world rele-
vance for personalized, context-aware image modifications.



Table 1. Text prompt list for quantitative evaluation.

Text prompts for highly semantic parts Text prompts for low semantic parts
“a photo of a [V] face, with glasses” “a photo of a [V] face, with red hair”

“a photo of a [V] face, with chinstrap beard” “a photo of a [V] face, with green hair”
“a photo of a [V] face, with a mustache” “a photo of a [V] face, with red lips”
“a photo of a [V] face, with eyes closed” “a photo of a [V] face, with black eyeshadows”

“a photo of a [V] face, smiling” “a photo of a [V] face, with thick eyebrows”
“a photo of a [V] face, with a smirk” “a photo of a [V] face, with blue eyes”

“a photo of a [V] face, with fringe hairstyle” “a photo of a [V] face, with exaggerated blush”
“a photo of a [V] face, with sunglasses” “a photo of a [V] face, with a golden tan”

“a photo of a [V] face, with thick glasses”
“a photo of a [V] face, with a beanie”

“a photo of a [V] face, with a wider smile”
“a photo of a [V] face, with a headscarf”

“a photo of a [V] face, with tribal face paint”
“a photo of a [V] face, with a double chin”

Figure 2. Stage settings and 𝜆𝑖𝑛𝑖𝑡𝑡 of different identities.

Overall, DreamSalon advances the field of personalized im-
age editing, establishing a benchmark for future develop-
ments.

2.4. Editing Consistency Across Multiple Images of
a Single Identity

Our approach streamlines personalization by initially train-
ing a HyperNetwork for an identity in approximately two
minutes. Unique weights of an image are then generated
by the HyperNetwork and employed for fast identity-context
editing across various images of the same identity, taking just
26 seconds per image. The adaptability of editing various
images of the single identity without re-training the Hyper-
Network is crucial for fast personalization models. Fig. 9
presents edits on various images of a single identity, without
re-training the HyperNetwork, emphasizing our method’s
sensitivity to individual traits.

3. More Ablation Studies
3.1. Stage Configurations of Different Identities

Analyzing the frequency and initial lambda (𝜆𝑖𝑛𝑖𝑡𝑡 ) changes
over time for different identities, as illustrated in Fig. 2, we

observe that the frequency change aligns with the 𝜆𝑖𝑛𝑖𝑡𝑡 vari-
ation. Both identities exhibit distinct patterns in their fre-
quency and gradient shifts, marking the transition from the
editing to the boosting stages. For the first identity, editing
occurs until timestep 30 and then transitions into boosting
at timestep 20. In contrast, the second identity starts boost-
ing earlier at timestep 26 after editing which concludes at
timestep 16. This variance highlights the unique dynamic
editing pathways that can be adapted based on individual
facial characteristics.

3.2. Different Configuration of Stages

This ablation study, depicted in Fig. 3, evaluates how dif-
ferent configurations of editing and boosting stages influ-
ence facial image manipulation. We compare the efficacy
of DreamSalon’s editing (2nd column) against four variant
configurations, focusing on the timing of aggressive editing
and quality boosting.
Different Editing Stages: Aggressive editing in the later
diffusion stage (3rd column, timesteps 30 to 0) fails to
achieve the intended edits, supporting the theory in Ap-
pendix 1.1 that early-stage editing is more effective. Con-
tinuous aggressive editing across the process (4th column,
timesteps 50 to 0) impacts context and images’ quality, un-



Figure 3. Impact of Stages Configurations in Facial Image Editing:
From optimal identity-preserving manipulations (DreamSalon) to
various degrees of editing intensity and quality boosting across the
diffusion process.

derscoring that indiscriminate editing lacks the necessary
subtlety and can lead to over-manipulation.
Different Boosting Stage: Early-stage quality boosting (5th
column, timesteps 50 to 30) yields artifacts, indicating that
such an approach is premature at a stage when the im-
age lacks sufficient structure to benefit from the enhance-
ment. Extensive boosting throughout the process (6th col-
umn, timesteps 50 to 0) leads to widespread artifacts and
undesirable edits, correlating Appendix 1.2 that continuous
introduction of stochastic noise can increase the risk of error
accumulation, necessitating precise boosting timing.

3.3. Multiple Attributes in Target Prompts

In our examination of DreamSalon’s adaptability to various
textual prompts, we assess the impact of prompt complex-
ity on editing outcomes, by maintaining consistent source
prompts and progressively enriching the target prompts with
additional attributes. As demonstrated in Fig. 4, the intro-
duction of a single new attribute (2nd column) is effectively
handled by DreamSalon, affirming its capacity for precise at-
tribute manipulation. Furthermore, DreamSalon showcases
its robustness by handling multiple attributes, whether they
are independent (e.g., glasses and a mustache) or exhibit
correlation (e.g., smiling and red lips). DreamSalon deliv-
ers compelling and coherent editing effects that capture the
nuanced interplay of the combined attributes.

4. Implementation Details
The foundational concept of HyperDreambooth [4] involves
the partitioning of the weight space of rank-1 LoRA residu-
als, introducing two novel hyperparameters: the down-rank
𝑎 and the up-rank 𝑏. Consistent with the original study, we
adopt the same hyperparameter settings for our experiments.
HyperDreambooth innovates by utilizing a HyperNetwork
to craft personalized weights, which serve as the initial at-

Figure 4. Exploring the Robustness of DreamSalon to Complex-
ity of Target Prompts: An evaluation of facial image edits with
progressively complex prompts, demonstrating the method’s pro-
ficiency in executing edits from simple single-attribute changes to
more intricate multi-attribute transformations.

tention weights for the pre-trained Latent Diffusion Model.
The HyperNetwork’s optimization is directed by the follow-
ing loss function:

LHyperDreambooth = 𝛼E𝜖 ,z,c [| |𝜖−𝜖 𝜃 (z𝑡 , c)∥22]+| |𝜃−𝜃 | |
2
2, (5)

where 𝜃 are the pre-optimized weight parameters of the
HyperNetwork, and 𝛼 is the hyperparameter that modulates
the balance between the two terms of the loss function.
Following the original work, we set 𝛼 to 0.1. By using
2∼4 images of an identity, we obtain personalized weights
𝜃per from the HyperNetwork, enabling the generation of
various customized images for that identity. In comparison
to Dreambooth’s requirement of approximately 10 minutes
to fine-tune a Latent Diffusion Model and 8.6 GB of storage
per identity, HyperDreambooth significantly reduces both
the time to about 1.5 minutes and storage needs to 1.2 GB
for each identity. Once the HyperNetwork is trained, editing
across all images of the same identity can be accomplished
in 26 seconds.

5. Limitations
One of the limitations acknowledged in our work relates to
the method’s dependency on the similarity between source



and target prompts when utilizing differences in covariance
matrices for editing. In line with practices from prior studies
such as P2P [2], PnP [5], and DreamBooth [3], our approach
assumes that users will typically modify attributes in the
source prompts rather than make drastic changes. Hence,
the covariance matrices primarily differ in these appended
attributes, which our method is designed to capitalize on
for effective editing. We recognize that our method may
not be fully equipped to handle cases where source and
target prompts are dissimilar – a scenario that has not been
extensively explored in the literature and presents a new
avenue for future research.

Additionally, we observed the increased brightness in the
generated images and found they appear to be linked to the
signal-to-noise ratio within the images. This finding sug-
gests that the observed brightness variation is an emergent
property of the editing mechanism rather than a byproduct of
the boosting stage, pointing to the complex nature of visual
attribute manipulations in image generation models.
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Figure 5. Comprehensive comparison of identity-preserved face editing across various methods using our approach, showcasing the
consistent retention of identity and contextual elements in response to a diverse set of prompts.



Figure 6. Evaluation of our method’s editing performance on a consistent set of identities with the introduction of alternative prompts,
demonstrating the method’s robustness and fidelity in identity and context preservation.

Figure 7. Visual assortment of edited facial images, detailing the interactions of different identities with various prompts, emphasizing the
precision and adaptability of our editing technique.



Figure 8. Display of editing outcomes on new identities using the main prompts from the study, underscoring our method’s capacity to
extend its personalization and editing prowess across a broader identity spectrum.



Figure 9. Exhibition of our method’s personalized editing capabilities applied to multiple facial images of the same identity, each reflecting
our approach’s nuanced understanding of individual facial characteristics.
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