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6. ICP-Flow: cluster pairing
This section details the optimized cluster pairing procedure
introduced in Section 3.5, where the goal is to coarsely pair
clusters that are likely to be correspondences. Further, we
improve over Section 3.5 by leveraging the cluster indices
from HDBSCAN, and explain its reasoning in detail. We
start with clusters that share the same cluster index, i.e, Ct

m

and Ct+∆t
n where m = n, as they are highly likely to be

static or slow-moving. This is because HDBSCAN tends
to group close-by points as one. We pair these clusters and
send them to ICP matching (Section 3.6), a procedure that
measures to what extent a cluster aligns with the paired one.
Afterward, we reject unreliable pairs if the inlier ratio r or
distance d exceeds the predefined threshold, i.e. r < τr or
d > τd where τr or τd are manually defined in Section 3.7.
We remove successfully matched pairs from the original set
of clusters obtained from HDBSCAN. This way we sub-
stantially reduce the search space.

We then process the remaining unmatched clusters af-
ter the aforementioned procedure. We search for possible
matches in a local neighborhood around Ct

m, i.e. a square
region of size τx × τy where τx and τy (in meters) are the
maximal translation possible within ∆t along the x and y
dimensions. We pair each cluster Ct

m with remaining clus-
ters at time t +∆t that lie in the predefined region. Subse-
quently, we feed these pairs to ICP matching (Section 3.6)
and cluster association (Section 3.7) for further validation.

7. ICP-Flow: tracking over multiple scans
We detail the design of the proposed Ours+Tracker in Sec-
tion 4.5, which estimates scene flow from a sequence of
scans. Simply speaking, we first estimate scene flow from
every pair of nearby scans, thus obtaining a set of matched
clusters, together with their cluster indices and transfor-
mations. Then, given a random cluster as a query, we it-
eratively search for its correspondence over each pair of
nearby scans, starting from the current scan and stopping
at the initial scan. Finally, we transform the query clus-
ter sequentially by estimated transformation at each time
step and recover the scene flow for a longer time dura-
tion. By this means we avoid missing matches over time.
It is worth mentioning that Ours+Tracker does use inter-
mediate frames while other models do not use intermediate
scans in Tab. 4. Additionally, we show a comparison, in
Tab. 5, with PCA+Tracker[17], where the learned spatio-
temporal associator in the original design is replaced by a
constant-velocity Kalman tracker [54, 55]. Simply speak-
ing, the Kalman tracker solves association over time by

greedily matching the centroids of clusters based on L2 dis-
tance. We directly use the result from [17]. The compar-
ison between PCA and PCA+Tracker shows that the sim-
ple Kalman tracker underperforms considerably as it suf-
fers from incorrect centroid estimation. In comparison,
Our+Tracker is able to outperform PCA on dynamic fore-
ground thanks to the ICP-based tracking.

8. Comparison with RigidFlow [25]

We additionally compare with RigidFlow [25] on the
KITTIo dataset [28], as both models follow the “cluster-
ing + ICP” pipeline for flow estimation. A key difference is
that RigidFlow uses a deep network for initial pose estima-
tion, while ours uses histogram-based initialization without
relying on learning from data. We report the result using
the official checkpoint from authors on KITTIr [24] and us-
ing trained checkpoint by ourselves on Waymo [41]. Since
RigidFlow does not support full point cloud inference on
our device due to the high demand for GPU memory, we
randomly sample a maximum of 40,000 points from each
scan for inference. As shown in Tab. 6, our model outper-
forms RigidFlow [25] substantially, despite its simplicity.
We did not include results on longer sequences as Rigid-
Flow fails to produce a visually reasonable prediction.

9. Ablation study

We test the added value of the histogram-based initializa-
tion for ICP matching (Section 3.6) in Tab. 7. We compare
against the commonly used centroid alignment. As shown
in the result, a good initialization is essential for ICP match-
ing as Ours (centroids) underperforms significantly. Fig. 4
shows a failure case of centroid subtraction, which happens
frequently over a longer temporal horizon. Additionally, we
also test the performance of our design (Ours+KISS-ICP) in
the case where ego-motion information is unavailable. We
use KISS-ICP [46] to estimate a relative transformation be-
tween scans. Results show a considerable performance drop
on static background. Our observation aligns with [9] on
the importance of ego motion compensation. However, it
is a valid and common assumption for autonomous driving
to have ego motion available. Additionally, instead of us-
ing argmin for cluster association, we also test Hungarian
matching [11] which yields marginally better results than
the default setup.



Metrics Label Dynamic Foreground Static Foreground Static Background

EPE (m) ↓ Acc-S (%) ↑ Acc-R (%) ↑ EPE (m) ↓ Acc-S (%) ↑ Acc-R (%) ↑ EPE (m)↓ Acc-S (%) ↑ Acc-R (%) ↑
PCA [17] ✓ 0.1970 53.31 77.49 0.0216 97.16 99.44 0.0289 97.16 99.44
Ours - 0.2209 67.59 84.66 0.0272 96.08 99.16 0.0711 96.49 97.96

PCA+Kalman Tracker [17] ✓ 0.5860 36.30 61.60 0.0270 - - 0.0300 - -
Ours+Tracker - 0.1799 58.98 80.98 0.0341 88.53 97.73 0.0722 93.74 97.46

Table 5. Scene flow on Waymo dataset [41], over a longer temporal horizon (5 consecutive frames, 0.4 seconds). Given a clip of
5 consecutive scans, we compute the flow between the first frame and the other frames. The result is averaged over all points. We split
models that use intermediate scans (with “Tracker” in their names) from others. We highlight that Ours+Tracker is able to further improve
the quality of scene flow by leveraging intermediate frames.

Datasets KITTIo Waymo

Metrics EPE Acc-S Acc-R EPE (Dynamic) EPE (Static Foreground) EPE (Static Background)

RigidFlow (KITTIr) 0.1192 40.99 69.77 0.2575 0.1299 0.2517
RigidFlow (Waymo) 0.2748 7.47 26.25 0.2904 0.1673 0.3100
Ours 0.0423 94.30 94.42 0.0799 0.0165 0.0270

Table 6. Comparison with RigidFlow on KITTIo and Waymo
(0.1 seconds). We indicate the training dataset in the bracket. De-
spite being simple, our model outperforms RigidFlow by a large
margin, without relying on large quantities of data for training and
powerful compute.

Dynamic Static Static
Foreground Foreground Background

Ours 0.2209 0.0272 0.0711
Ours (centroid alignment) 0.3511 0.0789 0.1861
Ours (Hungarian Matching) 0.2163 0.0260 0.0681
Ours+KISS-ICP [46] 0.2617 0.0572 0.3386

Table 7. Ablation study. We report EPE errors on Waymo over
5 consecutive frames [17, 41]. Without the histogram-based ini-
tialization, the performance decreases substantially. Precise ego-
motion is also critical for scene flow, particularly for static back-
ground. When replacing argmin by Hungarian matching [11]
during cluster assignment, our model yields marginally better re-
sults.

(a) Input

(c) Centroid subtraction/alignment (d) ICP + Centroid alignment

Figure 4. ICP with centroid alignment. We show a pair of asso-
ciated clusters in (a), colored in green and blue respectively. They
are the bird-eye view of a moving truck. ICP fails (d) when simply
subtracting the centroids (c).

10. Visualization

We visualize the predicted scene flow from our model and
highlight several failure cases in Fig. 5, Fig. 8, and Fig. 7.
These qualitative results show the capability of ICP-Flow to

extract scene flow in various scenarios reliably.



Red:        scan at time t + flow (ground truth)

Green:    scan at time t

Blue:       scan at time t + Δt

Wrong association

Input scans

Prediction

Ground truth

+ flow (prediction)

+ flow (prediction)

Purple:   scan at time t + flow (prediction)

12

34

Figure 5. Visualization of predicted scene flow. We qualitatively compare our prediction to the ground truth. For better visualization,
we crop the region of interest from the entire scan. We plot the input scans at time t and t + ∆t, namely Xt and Xt+∆t, in green and
blue, respectively. We color the flow-compensated scan at time t, namely X′

t, in purple by adding the predicted scene flow Ft to Xt. In
comparison, we use red to indicate the flow-compensated scan at time t, namely X∗

t , by adding the ground truth flow. The left figure is
composed of Xt, Xt+∆t and X′

t. ICP-Flow is able to output reasonable predictions once the blue and purple points align (i.e. overlap) with
each other. However, ICP-Flow fails in certain scenarios by associating the wrong clusters, as indicated by the box on the top. We highlight
this failure in the right figure, where ✗ denotes a wrong association. As indicated by the dashed lines on the left, ICP-Flow associates
clusters 1 and 2 (or Ct

1 and Ct+∆t
2 ), and estimates a transformation that best aligns them. Unfortunately, Ct

1 remains static within ∆t
according to the ground truth (in red). Similarly, we observe that Ct

3 and Ct+∆t
4 are also falsely associated. Interestingly, after careful

examination, we find this an annotation error in the preprocessed Waymo dataset [17], as explained in Fig. 6.
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Figure 6. Visualization of the original scans from Fig. 5, after ego-motion compensation. After careful examination, we find that
Fig. 5 is not perfectly annotated and ICP-Flow is actually making a reasonable prediction. We highlight the clusters that a visual examiner
intends to associate in boxes, based on the observation that they are heading from right to left (indicated by the red arrow below the box).
However, in the preprocessed Waymo dataset [17], these points (in green and inside the box) are labeled as static (i.e., without having
correspondences), which we assume to be a mistake during preprocessing. We manually examined numerous examples and did not find
other annotation errors.

Red:        scan at time t + flow (ground truth)Green:    scan at time t
Blue:      scan at time t + Δt Purple:   scan at time t + flow (prediction))

Figure 7. Failure case. We show another failure case where a cluster moves out of the perception range, as indicated in the box. Thus
ICP-Flow fails to associate and outputs zero scene flow, i.e. the cluster moves identically to the ego autonomous vehicle. This often leads
to substantially large errors for dynamic foreground.



Red:        scan at time t + flow (ground truth)Green:    scan at time t
Blue:      scan at time t + Δt Purple:   scan at time t + flow (prediction)

Figure 8. Failure case. We show a failure case where occlusion happens. We highlight this failure in boxes, where our model predicts
zeros for the given cluster (in green), as the purple and green points overlap seamlessly. This results from (1) low inlier ratio, as the blue
cluster at time t+∆t consists of much fewer points than the green cluster at time t; (2) partial occlusion, as we are unable to observe the
blue cluster from a similar view, thus making it hard to match with the green cluster.


