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Supplementary Material

The content of the supplementary material involves:

• Experimental details in Sec. A.

• Effect of textual restoration in Sec. B.

• Explicit textual representation v.s. implicit textual repre-
sentation in Sec. C.

• Guidance visualization in Sec. D.

• More visual comparisons in Sec. E.

A. Experimental Details

In this section, we list experimental details for different im-
age restoration task (i.e., all-in-one image restoration [?
], image deblurring [? ? ], image dehazing [? ], im-
age deraining [? ], and image denoising [? ]), the pro-
posed degradation-free guidance generation process (i.e.,
image-to-text mapping and textual restoration), and guided-
restoration.
All-in-One Image Restoration. We adopt PromptIR [? ]
as our backbone in all-in-one image restoration. Follow-
ing [? ], network has 8 stages (the first 7 stages as main
network, the last stage as refinement), the number of blocks
for each stages is [4, 6, 6, 8, 6, 6, 4, 4], network width is
48, the number of heads for each stages is [1, 2, 4, 8, 4,
2, 1, 1]. In perspective of training data, we adopt concate-
nation of 400 images from BSD [? ] and 4,744 images
from WED [? ] dataset as denoising training data, 200 im-
ages from Rain100L [? ] for deraining task, 72,135 images
from SOTS for dehazing task. Considering dataset size gap
among different tasks, we properly enlarge deraining data
and denoising data as [? ]. To train, we adopt AdamW op-
timizer with CosineAnnealing learning rate scheduler, the
initial learning rate of the main restoration network and dy-
namic aggregation is set to 2e-4 and 1e-4, respectively. We
train all-in-one image restoration on 4 Tesla-V100 GPUs
with training patch size 128, batch size 48. Performance re-
ported on Table 1 is referred to [? ]. PSNR and SSIM scores
are calculated on RGB channels, except which of deraining
task are calculated on Y-channel in YCbCr color space.
Image Deblurring. We adopt NAFNet [? ] as our back-
bone in single-image motion deblurring, Restormer [? ] as
backbone in defocus deblurring. In single-image motion
deblurring task, we follow [? ], main restoration network
has 9 stages, and the number of blocks for each stage is
[1, 1, 1, 28, 1, 1, 1, 1, 1], network width is 64. We adopt
GoPro [? ] as our training data and directly evaluated the

trained model on GoPro validation set, HIDE [? ] testing
set, and Realblur [? ] dataset. GoPro dataset has 4,214
blur-sharp paris of data (2,103 for training and 1,111 for
validation), testset of HIDE dataset consist of 2,025 im-
ages, and two subsets of Realblur both have 980 images. To
train single-image motion deblurring, we adopt AdamW op-
timizer with CosineAnnealing learning rate scheduler, the
initial learning rate of the main restoration network and dy-
namic aggregation module is 1e-4 and 5e-5, respectively.
We train single-image motion deblurring on 8 Tesla-V100
GPUs with training patch size of 256, batch size of 16. In
defocus deblurring task, we follow [? ], main restoration
network has 8 stages (the last stage as refinement stage),
the number of blocks of each stage is [4, 6, 6, 8, 6, 6, 4,
4], network width is 48, the number of heads of each stage
is [1, 2, 4, 8, 4, 2, 1, 1]. Note that input channels is 6 in
dual-pixel defocus deblurring, the output channels is 3 in
both single-image defocus deblurring and dual-pixel defo-
cus deblurring. We adopt DPDD [? ] dataset as our training
data. DPDD dataset contains 500 indoor & outdoor scenes
captured by DSLR camera. Each scene includes three defo-
cus input images and a corresponding all-in-focus ground-
truth image. Three input images are labeled as left, right
and center views. The left and right defocused sub-aperture
views are acquired with a wide camera aperture setting, and
the corresponding all-in-focus ground-truth image captured
with a narrow aperture. Following Restormer [? ], we use
sub-aperture data to train dual-pixel defocus deblurring, and
we use center input image to train single-image defocus
deblurring. To perform evaluation, we separately evaluate
trained model in indoor & outdoor scene testing data and the
average performance is calculated by weighted combina-
tion. To train defocus deblurring, we maintain progressive
learning in official implementation, we adopt AdamW op-
timizer with CosineAnnealing learning rate scheduler, the
initial learning rate of main restoration network and dy-
namic aggregation module is set to 3e-4 and 1e-4, respec-
tively. Performance reported in Table 2 and Table 3 is re-
ferred to [? ] and [? ]. PSNR and SSIM scores are
calculated on RGB channels.

Image Dehazing. We adopt SFNet [? ] as our backbone
in image dehazing. Following [? ], network width is set to
32, the number of resblocks is 16. We train image dehaz-
ing on RESIDE [? ] dataset, we train and evaluate method
separately on indoor scene and outdoor scene data. To train
image dehazing, we use Adam optimizer with CosineAn-
nealing learning rate scheduler, the initial learning rate of



main network and dynamic aggregation is set to 1e-4 and
5e-5, respectively. Performance in Table 4 is referred to [?
]. PSNR and SSIM scores are calculated on RGB channels.
Image Deraining. We adopt DRSformer [? ] as our
backbone in image deraining. Following [? ], we adopt
7 stages for main restoration network, the number of blocks
for each stage is [4, 6, 6 ,8, 6, 6, 4], network width is
set to 48, the number of heads for each stage is [1, 2, 4,
8, 4, 2, 1]. For training, we separately train and evaluate
the proposed method on four datasets with synthetic rain-
streak degradation, including Rain200L [? ], Rain200H [?
], DID-Data [? ], and DDN-Data [? ]. Rain200H and
Rain200L dataset contain 1,800 pairs of rainy-clean images
for training and 200 pairs images for testing. In DID-Data
and DDN-Data, the synthetic rainstreak has different direc-
tions and different levels. DID-Data contains 12,000 pairs
of images for training and 1,200 pairs of images for testing.
DDN-Data contains 12,600 pairs of images for training and
1,400 images for testing. We employ MEFC [? ] module
for Rain200H, DID-Data, and DDN-Data. During training,
we adopt AdamW optimizer with CosineAnnealing learn-
ing rate scheduler, patch size and batch size is set to 128
and 16 with 4 Tesla-V100 GPUs, the initial learning rate of
main network and dynamic aggregation is set to 1e-4 and
5e-5, respectively. Performance in Table 5 is referred to [?
]. PSNR and SSIM scores are calculated on Y channel in
YCbCr color space.
Image Denoising. We adopt Restormer [? ] as our back-
bone in image denoising. Following [? ], we employ the
bias-free network with 8 stages, the number of blocks for
each stage is [4, 6, 6, 8, 6, 6, 4, 4], network width is set to
48, the number of heads of each stage is [1, 2, 4, 8, 4, 2, 1,
1]. We adopt concatenation data of Div2k [? ] (800 images
for training), Flickr2k (2,650 images for training), BSD [? ]
(400 images for training), and WED [? ] (4,744 images for
training) to train Gaussian grayscale denoising and Gaus-
sian color denoising. We adopt 320 high-resolution images
in SIDD [? ] dataset for real-world denoising. During train-
ing, we also maintain the progressive learning strategy, we
adopt AdamW optimizer with CosinAnnealing learning rate
scheduler, the initial learning rate of main restoration net-
work and dynamic aggregation is set to 3e-4 and 1e-4, re-
spectively. Performance in Table 6, Table 7, and Table 8 is
referred to [? ]. PSNR and SSIM scores are calculated on
RGB channels.
Image-to-Text Mapping. To enable our image-to-text
mapping network can project both clean images and de-
graded images into textual space, we use the collection
of high-quality data, degraded data from different image
restoration tasks as our training data. High-quality data in-
cludes LSDIR [? ] dataset and HQ-50K [? ] dataset, LS-
DIR dataset contains 84,991 high-quality images for train-
ing, HQ-50K dataset contains 50,000 high-quality images

for training. Degraded data includes GoPro, RESIDE,
Rain200H, Rain200L, DID-Data, DDN-Data, and DFBW
data with synthetic Gaussian noise. During training, we
crop high-quality high-resolution data (LSDIR and HQ-
50K) into 512×512 as input, for others we centerly crop
images along shorter side and resize them to 512×512 as
input. The mapping network is implemented as four-layer
MLP network, and we adopt N=20 words to control rep-
resentation capability of textual word embedding. To en-
code image concepts into textual space, feature from the last
layer of CLIP image encoder is selected as input to image-
to-text mapping network. The learning rate is set to 1e-6
and batch size is set to 4.
Textual Restoration. To train textual restoration network,
we use concatenation of training dataset used in different
image restoration tasks as our training data. We adopt the
same strategy to preprocess pairs of degraded-clean data to
512×512 patches as input. The same with image-to-text
mapping network, the textual restoration network is also im-
plemented by four-layer MLP network. The learning rate is
set to 1e-6 and training batch size is set to 4. During guid-
ance generation, we use 200 steps of DDIM scheduler with
scale of 5.
Guided-Restoration. Following [? ], the dynamic aggre-
gation includes two steps: feature matching and feature ag-
gregation. In feature matching, we adopt a shared n-stages
encoder to extract multi-scale feature from degraded input
and clean guidance, n depends on total downsampling ratio
of the main restoration network, each stage is with 4 resid-
ual blocks, the width of encoder is the same to the width
of main network. We then adopt a coarse-to-fine manner to
match useful information for each patch of degraded input,
e.g., we first match in coarse block level then match in fine
patch level. In coarse matching, feature block size is set to
8, dilation ratio is set to [1, 2, 3]. In fine matching, patch
size is set to 3. For feature aggregation, we employ a more
general way. We simply use concatenation & residual/self-
attention blocks with adaptive scaling factor α to fuse guid-
ance information to main restoration network, i.e., Eq. (4).

B. Effect of Textual Restoration
In this section, we demonstrate the effectiveness of our tex-
tual restoration. We discard textual restoration and directly
use the output of image-to-text mapping network as condi-
tional input for diffusion model, and the visual results of the
synthetic guidance images are shown in Fig. A, denoted as
w/o. textual restoration.

C. Explicit Textual Representation
v.s. Implicit Textual Representation

In this section, we compare synthetic guidance images con-
ditioned on explicit text representation and implicit textual



Degraded w/o. textual restoration w/. textual restoration

Figure A. Visual comparison of w/o. textual restoration and w/.
textual restoration.

representation, 1) explicit text representation: we first con-
vert degraded images into image caption by BLIPv2 [? ],
then we manually discarding degradation-related text in im-
age caption, finally we use the processed image caption as
text prompt input to StableDiffusion to get synthetic guid-
ance images. Denoted as Explicit. 2) implicit textual rep-
resentation: our method, which is denoted as Ours. As
shown in Fig. B, Fig. C, Fig. D, and Fig. E, we illustrate
visual comparison for image deblurring, image deraining,
image dehazing, and image denoising tasks. We can found
though explicit text representation can describe content of
degraded image properly, the synthetic results cannot main-
tain style, details and texture of original content. And in
image denoising task, explicitly converting degraded noise
image into image caption usually leads to wrong captions
and thus cannot provide useful guidance image for restora-
tion.

D. Guidance Visualization

We illustrate synthesized guidance images for each image
restoration:image deblurring shows in Fig. F, image derain-

ing shows in Fig. G, image dehazing shows in Fig. H, image
denoising shows in Fig. I.

E. More Visual Comparisons
We provide visual comparison for different image restora-
tion tasks:
• All-in-one image restoration: image deraining results

show in Fig. J and Fig. K, image dehazing results show
in Fig. L, image denoising results show in Fig. M.

• Image deblurring results: single-image motion deblurring
results show in Fig. N and Fig. O, defocus deblurring re-
sults show in Fig. P and Fig. Q.

• Image dehazing results: Fig. R.
• Image deraining results: Fig. S, Fig. T, and Fig. U.
• Image denoising results: Fig. V.



Figure B. Visual comparison of synthetic guidance by explicit and implicit textual representation on image deblurring task.



Figure C. Visual comparison of synthetic guidance by explicit and implicit textual representation on image deraining task.



Figure D. Visual comparison of synthetic guidance by explicit and implicit textual representation on image dehazing task.



Figure E. Visual comparison of synthetic guidance by explicit and implicit textual representation on image denoising task.
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Figure F. Illustration of guidance images for image deblurring task.



Degraded Guidance Degraded Guidance

Degraded Guidance Degraded Guidance
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Figure G. Illustration of guidance images for image deraining task.



Degraded Guidance Degraded Guidance

Degraded Guidance Degraded Guidance
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Figure H. Illustration of guidance images for image dehazing task.



Degraded Guidance Degraded Guidance

Degraded Guidance Degraded Guidance

Degraded Guidance Degraded Guidance

Degraded Guidance Degraded Guidance

Degraded Guidance Degraded Guidance

Figure I. Illustration of guidance images for image denoising task.



Degraded Label PromptIR [? ], 37.68 dB Ours, 39.06 dB

Degraded Label PromptIR [? ], 38.50 dB Ours, 40.50 dB

Degraded Label PromptIR [? ], 36.59 dB Ours, 38.13 dB

Degraded Label PromptIR [? ], 36.02 dB Ours, 37.66 dB

Figure J. Image Deraining on Rain100L [? ].



Degraded Label PromptIR [? ], 39.70 dB Ours, 41.57 dB

Degraded Label PromptIR [? ], 40.99 dB Ours, 42.92 dB

Degraded Label PromptIR [? ], 40.81 dB Ours, 41.09 dB

Degraded Label PromptIR [? ], 41.14 dB Ours, 42.60 dB

Degraded Label PromptIR [? ], 36.69 dB Ours, 38.02 dB

Degraded Label PromptIR [? ], 40.60 dB Ours, 42.35 dB

Degraded Label PromptIR [? ], 40.11 dB Ours, 40.95 dB

Figure K. Image Deraining on Rain100L [? ].



Degraded Label PromptIR [? ], 36.58 dB Ours, 36.73 dB

Degraded Label PromptIR [? ], 39.69 dB Ours, 43.64 dB

Degraded Label PromptIR [? ], 30.05 dB Ours, 42.38 dB

Degraded Label PromptIR [? ], 37.84 dB Ours, 42.58 dB

Degraded Label PromptIR [? ], 26.53 dB Ours, 36.72 dB

Figure L. Image Dehazing on SOTS-outdoor [? ].



Degraded Label PromptIR [? ], 26.46 dB Ours, 26.58 dB

Degraded Label PromptIR [? ], 27.41 dB Ours, 27.53 dB

Degraded Label PromptIR [? ], 27.69 dB Ours, 27.86 dB

Degraded Label PromptIR [? ], 27.60 dB Ours, 27.76 dB

Degraded Label PromptIR [? ], 25.06 dB Ours, 25.17 dB

Figure M. Image Denoising on CBSD68 [? ].



Degraded Label DMPHN [? ], 28.80 dB MTRNN [? ], 28.92 dB

MIMO-UNet+ [? ], 29.34 dB HINet [? ], 29.36 dB NAFNet [? ], 29.41 dB Ours, 29.80 dB

Degraded Label DMPHN [? ], 30.81 dB MTRNN [? ], 31.30 dB

MIMO-UNet+ [? ], 32.83 dB HINet [? ], 33.43 dB NAFNet [? ], 34.46 dB Ours, 34.50

Degraded Label DMPHN [? ], 30.83 dB MTRNN [? ], 29.74 dB

MIMO-UNet+ [? ], 32.43 dB HINet [? ], 32.46 dB NAFNet [? ], 33.08 dB Ours, 33.41 dB

Degraded Label DMPHN [? ], 27.04 dB MTRNN [? ], 28.25 dB

MIMO-UNet+ [? ], 28.82 dB HINet [? ], 29.02 dB NAFNet [? ], 29.22 dB Ours, 29.56 dB

Figure N. Single-image motion deblurring on GoPro [? ].



Degraded Label DMPHN [? ], 27.74 dB MTRNN [? ], 28.46 dB

MIMO-UNet+ [? ], 29.10 dB HINet [? ], 28.92 dB NAFNet [? ], 29.81 dB Ours, 30.18 dB

Degraded Label DMPHN [? ], 24.81 dB MTRNN [? ], 25.40 dB

MIMO-UNet+ [? ], 28.31 dB HINet [? ], 26.28 dB NAFNet [? ], 30.25 dB Ours, 30.71 dB

Degraded Label DMPHN [? ], 30.49 dB MTRNN [? ], 29.90 dB

MIMO-UNet+ [? ], 32.88 dB HINet [? ], 32.99 dB NAFNet [? ], 35.34 dB Ours, 35.54 dB

Degraded Label DMPHN [? ], 30.38 dB MTRNN [? ], 30.61 dB

MIMO-UNet+ [? ], 32.00 dB HINet [? ], 32.73 dB NAFNet [? ], 34.30 dB Ours, 34.64 dB

Figure O. Single-image motion deblurring on GoPro [? ].



Degraded Label DMPHN [? ], 21.62 dB MPRNet [? ], 20.91 dB

DPDNet [? ], 22.09 dB RDPD [? ], 22.50 dB Restormer [? ], 22.51 dB Ours, 22.64 dB

Degraded Label DMPHN [? ], 21.62 dB MPRNet [? ], 21.82 dB

DPDNet [? ], 21.80 dB RDPD [? ], 21.75 dB Restormer [? ], 23.92 dB Ours, 24.08 dB

Degraded Label DMPHN [? ], 22.50 dB MPRNet [? ], 21.03 dB

DPDNet [? ], 22.94 dB RDPD [? ], 22.91 dB Restormer [? ], 21.88 dB Ours, 22.25 dB

Figure P. Defocus deblurring on DPDD [? ].



Degraded Label DMPHN [? ], 18.34 dB MPRNet [? ], 18.46 dB

DPDNet [? ], 18.54 dB RDPD [? ], 18.61 dB Restormer [? ], 18.63 dB Ours, 18.75 dB

Degraded Label DMPHN [? ], 27.06 dB MPRNet [? ], 27.81 dB

DPDNet [? ], 26.59 dB RDPD [? ], 26.75 dB Restormer [? ], 28.65 dB Ours, 28.74 dB

Degraded Label DMPHN [? ], 25.11 dB MPRNet [? ], 25.42 dB

DPDNet [? ], 24.01 dB RDPD [? ], 23.09 dB Restormer [? ], 26.43 dB Ours, 26.58 dB

Figure Q. Defocus deblurring on DPDD [? ].



Degraded Label Dehamer [? ] Dehazeformer [? ] SFNet [? ] 40.19 Ours 41.44

Degraded Label Dehamer [? ] Dehazeformer [? ] SFNet [? ] 41.65 Ours 42.78

Degraded Label Dehamer [? ] Dehazeformer [? ] SFNet [? ] 36.92 Ours 37.59

Degraded Label Dehamer [? ] Dehazeformer [? ] SFNet [? ] 39.23 Ours 40.31

Degraded Label Dehamer [? ] Dehazeformer [? ] SFNet [? ] 37.58 Ours 38.30

Degraded Label Dehamer [? ] Dehazeformer [? ] SFNet [? ] 38.19 Ours 39.32

Degraded Label Dehamer [? ] Dehazeformer [? ] SFNet [? ] 33.27 Ours 34.35

Degraded Label Dehamer [? ] Dehazeformer [? ] SFNet [? ] 37.54 Ours 38.04

Figure R. Image dehazing results on SOTS [? ].



Degraded Label RESCAN [? ], 30.36 dB PReNet [? ], 31.50 dB

MPRNet [? ], 33.02 dB Uformer [? ], 32.99 dB DRSformer [? ], 33.30 dB Ours, 33.50 dB

Degraded Label RESCAN [? ], 28.65 dB PReNet [? ], 27.64 dB

MPRNet [? ], 29.35 dB Uformer [? ], 29.26 dB DRSformer [? ], 29.82 dB Ours, 30.07 dB

Figure S. Image deraining results on DID-Data [? ]



Degraded Label RESCAN [? ], 30.72 dB PReNet [? ], 32.68 dB

MPRNet [? ], 35.11 dB Uformer [? ], 35.14 dB DRSformer [? ], 35.72 dB Ours, 36.20 dB

Degraded Label RESCAN [? ], 30.87 dB PReNet [? ], 33.09 dB

MPRNet [? ], 35.08 dB Uformer [? ], 34.98 dB DRSformer [? ], 35.60 dB Ours, 35.93 dB

Figure T. Image deraining results on DID-Data [? ]



Degraded Label RESCAN [? ], 30.42 dB PReNet [? ], 31.59 dB

MPRNet [? ], 33.71 dB Uformer [? ], 34.05 dB DRSformer [? ], 34.44 dB Ours, 34.65 dB

Degraded Label RESCAN [? ], 33.07 dB PReNet [? ], 34.97 dB

MPRNet [? ] , 37.27 dB Uformer [? ], 37.05 dB DRSformer [? ], 37.77 dB Ours, 38.91 dB

Figure U. Image deraining results on DID-Data [? ]



Degraded Label RNAN [? ], 29.62 dB

SwinIR [? ] 30.09 dB Restormer [? ], 30.65 dB Ours, 30.71 dB

Degraded Label RNAN [? ], 34.42 dB

SwinIR [? ], 35.12 dB Restormer [? ], 35.76 dB Ours, 35.81 dB
Figure V. Gaussian color denoising results on Urban100 [? ].
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