
MLP Can Be A Good Transformer Learner

Supplementary Material

8. Code Asset

Acknowledgement. In Sec. 4.1, we introduce the used
benchmarks. The code of this work is built upon previous
works (Tab. 6). The authors thank their open sourcing.

9. Performance May Not Show The Full Pic-

ture.

In Sec. 3.3, we adopt the idea of transfer entropy and pro-
pose the NOSE to measure the interaction between an or-
dered array of attention layers and the final output layer.
The associated combination of attention layers with mini-
mum transfer entropy is selected for removal.

One can mask certain attention layers (i.e. set to identical
mapping) and measure the performance, namely remained

performance. This metric is plausible to reflect the inter-
action between the corresponding attention layers and the
final output layer, where higher remained performance in-
dicates less interaction. We argue that the remained perfor-
mance does not show the full picture of the network. We
sample some combinations of attention layers and visual-
ize their transfer entropy together with the remained per-
formance in Fig. 7. We find that two metrics are in part
correlated. Specifically, most of the points are scattered on
the right side. Typically, a combination with lower trans-
fer entropy has a higher remained performance. In contrast,
given several combinations with the same remained perfor-
mance, their transfer entropy varies largely. Since transfer
entropy is more consistent, we use it to determine the cor-
relation among multiple layers. We also perform a case
study to show the superiority of transfer entropy against
the remained performance in Tab. 7. Although layer index
[0,1,3,4,6] has a lower remained performance compared to
layer index [1,2,3,4,6], the resulting performance is more
favorable.

10. More Experiments

More details. For ImageNet-1k, we use 8 GPUs with a
batch size of 128 per GPU. The learning rate is set to 1e-3
and a cosine scheduler is used to regulate the learning rate
till it reaches at 1e-5. We use the AdamW optimizer where
beta=(0.9,0.999). For CIFAR-100, we adpot a batch size
of 384 for each GPU. The image resolution is resized to
224⇥224. And we use the SGD optimizer with a learning
rate 0.1. For ADE20k, we also use 8 GPU and each GPU
processes 2 input images. The optimizer is SGD and learn-
ing rate is 0.01. The polynomial scheduler with power 1.0
is used to decay the learning rate at each iteration.

0

50

100

150

200

250

300

350

400

450

500

65 67 69 71 73 75 77 79 81 83
Remained performance (%)

Tr
an

sf
er

 e
nt

ro
py

Figure 7. Correlation between remained performance and transfer
entropy. Each point is a combination of attention layers with two
metrics: transfer entropy and remained performance.

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11

Transplanted
Baseline

Layer index

To
p-

1
A

cc
 (%

)

Figure 8. We transplant the transformer blocks of the original
DeiT-B into the corresponding blocks of our model and mea-
sure the performance to investigate feature compatibility. The top
blocks of our model are more compatible with the original model.

Feature space compatibility. We are interested in the fea-
ture space learned by our method. Inspired by network
transplant [40], we propose to transplant the original trans-
former blocks, indexed from 0 to 11, of a pre-trained Deit-B
into the corresponding blocks of our model. The classifi-
cation accuracy is used to measure the compatibility. As
shown in Fig. 8, we find that our model, starting from block
3, is more compatible with the feature space learned by the
full architecture in the top blocks. We conjecture that in bot-
tom blocks indexed by [0,1,2], transformer would learn low-
level semantics that are not very generalized. In particular,
even when the attention layers are removed, blocks 4 and 6
exhibit high compatibility, indicating our model learns the
feature space close to the original architecture.

Table 6. Used code asset in our work.

Exp. URL Version License

ImageNet-1k https://github.com/facebookresearch/deit 263a3f Apache-2.0
https://github.com/huggingface/pytorch-image-models 0.3.2 Apache-2.0

CIFAR-100 https://github.com/facebookresearch/ToMe af95e4 Creative Commons
ADE20k https://github.com/OliverRensu/TinyMIM d08470 NA
FLOPs https://github.com/facebookresearch/fvcore 9d683a Apache-2.0

Table 7. Case study regarding transfer entropy and remained performance.

Removed index Transfer entropy # Remained performance (%)" Top-1 (%)" Top-5 (%)"
[1, 2, 3, 4, 6] 446.0 70.45 81.2 95.4
[0, 1, 3, 4, 6] 81.2 67.28 81.8 95.6

Table 8. More experiments on DeiT-S and DeiT-T. The number in brackets indicates the ratio of attention layers removed.

Method Top-1 (%)" FLOPs (G)# Params (M)# Throughput (images/s)" Memory bound (images/10GB)"
DeiT-S [33] (baseline) 79.9 4.6 22.1 1318 1168
Evo-ViT [37] 79.4 3.0 22.1 1914 1168
EViT [17] 79.5 3.0 22.1 1921 1168
ToMe [5] 79.5 2.9 22.1 1905 1168
DiffRate [7] 79.6 2.9 22.1 1805 1168
TPS [35] 79.7 3.0 22.1 1896 1168
Ours (25%) 80.1 4.2 20.3 1502 1382

Ours (30%) 79.8 4.0 19.7 1588 1388

Ours (40%) 79.6 3.9 19.1 1648 1392

Ours (25%)+ToMe 79.9 2.7 20.3 2128 1352

Ours (30%)+ToMe 79.6 3.0 19.7 1932 1354

DeiT-T [33] (baseline) 72.2 1.3 5.7 3487 2320
EViT [17] 71.9 0.8 5.7 5178 2320
Evo-ViT [37] 72.0 0.8 5.9 5258 2320
ToMe [5] 71.2 0.9 5.7 4508 2320
ToMe [5] 70.9 0.8 5.7 4949 2320
TPS [35] 72.3 0.8 5.7 5012 2320
Ours (25%) 72.5 1.1 5.3 4001 2610

Ours (30%) 71.9 1.1 5.1 4196 2610

Ours (25%)+ToMe 72.3 0.8 5.3 5313 2600

Ours (30%)+ToMe 71.7 0.9 5.1 4846 2604

More backbones. We assess our model on two additional
backbones: DeiT-S and DeiT-T. We visualize their entropy
distribution in Fig. 9. We observe that the two entropy
distributions have a similar pattern to that of DeiT-B. The
number in the brackets indicates the ratio of attention lay-
ers removed. As shown in Tab. 8, for DeiT-S, our method
generally improves the memory bound by ⇠18.5% and the
throughput1 by 19.5% . When cooperated with an unsu-
pervised token merging method, our method, while remov-
ing 25% attention layers, can further improve the through-
put by 54% and outperforms other methods without perfor-
mance compromise. Note that when combined with token
merging, the working load of our model slightly decreases.
This is because the tensor manipulation introduced by to-

1Measured on a RTX 3090 GPU with batch size 256.

ken matching will consume a quantity of memory [20]. A
similar experiment result is observed for DeiT-T.

Table 9. Removing first # attention layers on DeiT-B.

Remove Num. 1 2 3 4 5 6 7

First-# T.E. 140 167 211 333 498 636 645
Top-1 (%) 81.8 81.8 81.7 81.4 80.8 79.8 77.6

NOSE T.E. 3 14 20 78 380 433 532
Top-1 (%) 81.8 81.8 81.8 81.8 81.8 81.5 81.0

Removing first # attention layers. In the main text, we
compare NOSE to the random selection strategy. Here,
we implement First-# as another baseline, where the first
consecutive attention layers are removed. As shown
in Tab. 9, First-# deteriorates quickly with the increase of
, while NOSE maintains good performance yet with less
transfer entropy (T.E.).

https://github.com/facebookresearch/deit
https://github.com/huggingface/pytorch-image-models
https://github.com/facebookresearch/ToMe
https://github.com/OliverRensu/TinyMIM
https://github.com/facebookresearch/fvcore

-2000

-1500

-1000

-500

0
0 1 2 3 4 5 6 7 8 9 10 11

Attention Layer
MLP layer

-900

-600

-300

0
0 1 2 3 4 5 6 7 8 9 10 11

Attention Layer
MLP layer

Layer index Layer index

En
tro

py

En
tro

py

(a) DeiT-S (b) DeiT-T

Figure 9. Entropy distribution of DeiT-S and Deit-T. We observe that the two distributions have a similar pattern to that of DeiT-B.

Table 10. Experiments of removal ratio.

Num. 1 2 3 4 5 6 7 8 9 10
Top-1(%) 81.8 81.8 81.8 81.8 81.8 81.5 81.0 79.4 76.3 72.8

Removal rates. We investigate the removal rates on DeiT-
B as in Tab. 10. When it comes to 75% removal rate (i.e. 9
layer), the performance starts to drop drastically.

	. Introduction
	. Related Work
	. Methods
	. Preliminary
	. Entropy Quantification
	. Interaction among Multiple Attention Layers
	. Integrating Attention Layer into MLP

	. Experiment
	. Baseline Setting
	. Main Result
	. Ablation Study and Sensitivity Analysis

	. A Look at Feature Expressivity
	. Conclusion
	. Acknowledgement
	. Code Asset
	. Performance May Not Show The Full Picture.
	. More Experiments

