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A. Related work
Vision-Language Pre-trained Models. Benefiting from
the efficiency of contrastive learning, vision-language pre-
trained models like [5, 10, 14, 18, 26, 39, 58, 59, 64] have
achieved advanced capability across downstream tasks.
Such dual-stream models have efficient inference speed on
multi-modal tasks like retrieval, as the image/text features
can be computed offline [9, 57]. However, these models
are often pre-trained with millions or billions of image-
text pairs from scratch, which is computationally expensive
[7, 45, 46]. Later works [25, 27, 35] propose to use more
complex objectives to reduce the amount of pre-training
data. Others [21, 56] intend to reduce the influence of noisy
and unmatched image-text pairs. However, these methods
lead to less competitive retrieval performance. In this work,
we show that we can prune the original pre-trained CLIP to
a desired size and significantly lift up the performance of
the pruned model in a data-efficient way, i.e., with several
magnitudes fewer pertaining data than the original CLIP.

Pruning of Transformer-based Models. Various meth-
ods have been proposed to compress uni-modal vision and
language transformer models [6, 24, 29, 31, 50, 52, 54, 63].
Among them, structured pruning methods remove unimpor-
tant structured components (e.g., attention heads, FFN neu-
rons, and Transformer layers) in the network. Depending on
how the pruned components are determined, pruning meth-
ods could be divided into two categories: search-based and
metric-based methods. Search-based methods [4, 19, 48]
usually apply masks on the structured components and need
a searching process to determine their importance. On the
other hand, metric-based methods apply various metrics to
determine module importance and result in a single-shot
pruning process. Widely used metrics include the mag-
nitude of weight [15, 16, 62, 65] and the variant in loss
[31, 33, 34]. Some researchers [12, 40] explore different
strategies for pruning BERT layers, such as “every other”,
“bottom or top dropping” and “search on valid” like CNN
Oracle Filter Pruning [1, 32]. Notably, the “every other”
strategy has been proven effective [12, 40], with DynaBERT
[17] implementing it to create dynamic depth networks. Ad-
ditionally, pruning is often used in combination with knowl-
edge distillation, which transfers knowledge from the orig-
inal unpruned teacher model to the smaller pruned model
with different kinds of knowledge [41, 47, 54].

In contrast to the extensive research on compressing uni-
modal Transformer-based models, compression of multi-

modal models remains under-explored. Our experiments
show that directly using widely-used metrics [15, 31] or
“every other” strategy [12, 40] for VLP pruning leads to
unsatisfactory performance, indicating the demand for ex-
ploring more accurate metrics to measure module impor-
tance of VLP models across multi-modal tasks. Recently,
EfficientVLM [51] proposes to distill the VLP model in
the pre-training stage and then prune attention heads dur-
ing the task-specific fine-tuning stage, but the distillation
stage proved not optimal in our experiments. Another work
Upop [45] uses a unified and progressive search-based prun-
ing method on vision-language models, but the search pro-
cess is expensive and is hard to apply to the pre-training
stage. TinyCLIP [53] proposes a multi-stage pruning and
distillation method for pre-training small OpenCLIP mod-
els [7]. However, the design of the multi-stage is complex
and the final performance relies on the huge pre-training
dataset LAION400M [42]. In this work, we propose a sim-
ple but effective metric called MoPE, which serves as a gen-
eral importance measure of various compressible compo-
nents like attention heads, FFN neurons, and Transformer
layers. Based on MoPE metric, we design a unified pruning
framework applied to both the pre-training and fine-tuning
stages, resulting in state-of-the-art MoPE-CLIP models.

B. Implementation Details
B.1. Detailed Experimental Settings

Here we describe detailed setups. For all experiments, we
use the same random seed (e.g., 42). All pre-training or
fine-tuning processes utilize 8x Nvidia V100 GPUs.

Details for Evaluation Benchmarks. For retrieval tasks,
we split the MSCOCO [28] and Flickr30K [38] datasets fol-
lowing [20]. For classification tasks, we adopt 11 down-
stream datasets following [60, 61], including CIFAR10, CI-
FAR100 [23], Caltech101 [13], Flowers102 [36], Oxford
Pets [37], DTD [8], Stanford Cars [22], FGVC Aircraft
[30], SUN397 [55], Food101 [3] and ImageNet [11].

Details for Fine-tuning Stage Compression Table B1
summarizes the hyperparameters for fine-tuning CLIP-ViT-
L/14 and distilling CLIP-VIT-B/32. During the distilling
process, we first fix the model and train the linear layer for
5 epochs with a learning rate of 1e-5 to learn a better map-
ping function. Table B2 lists the detailed retraining setups
for MagnCLIP, DynaCLIP, MoPE-CLIP, and SE-CLIP in



Config Fine-tuning Distilling

Optimizer AdamW, β = (0.9, 0.98)
LR schedule CosineLRScheduler
Weight decay 3e-4
Warmup ratio 0.1
Init LR 3e-6 1e-6
Batch size 256 1024
Training epochs 12 15
Distillation N/A Lsim + Lfeat

Table B1. Experimental setup for fine-tuning CLIP-VIT-L/14 or
distilling CLIP-ViT-B/32.

Downstream Task Image-to-text Text-to-image

Optimizer AdamW, β = (0.9, 0.98)
LR schedule CosineLRScheduler
Weight decay 3e-4
Warmup ratio 0.1
Init LR 2e-5 8e-5
Batch size 256 1024
Training epochs 20 10

Table B2. Experimental setup for retraining MagnCLIP, Dyna-
CLIP, MoPE-CLIP and SE-CLIP across TR and IR tasks.

Config Pre-training Further Fine-tuning

Optimizer AdamW, β = (0.9, 0.98)
LR schedule CosineLRScheduler
Weight decay 3e-4
Warmup ratio 0.02 0.1
Init LR 5e-5 4e-5
Batch size 512 512
Training epochs 20 15

Table B3. Experimental setup for pre-training DynaCLIP and
MoPE-CLIP and further fine-tuning on downstream tasks.

image-to-text retrieval (TR) and text-to-image retrieval (IR)
tasks The text encoders of these models are fixed for the TR
task, while image encoders are frozen for the IR task. For
SE-CLIP, we add a linear layer to align feature space, and
the hidden distillation loss is excluded due to the unmatched
number of image patches.

Details for Pre-training Stage Compression We list the
detailed setup for pretraining stage compression in Ta-
ble B3. MoPE-CLIP adopts the Recall Mean on MSCOCO
validation dataset as the specific MoPE metric. DynaCLIP
and MoPE-CLIP share the same hyperparameters.

B.2. Main Algorithm

We illustrate the computation process of the MoPE metric in
Algorithm 1, and our unified pruning framework resulting
in MoPE-CLIP in Algorithm 2.

Algorithm 1 Module-wise Pruning Error Metric
Input: CLIP model fφ, Module θ, Dataset D
Output: Importance of θ
1: procedure MOPE (fφ, θ,D):
2: Compute the full CLIP Performance on D: Z [fφ]
3: Compute the CLIPθ=0 Performance on D: Z [fφ−θ]
4: Compute the MoPEθ = Z [fφ]−Z [fφ−θ]

5: return MPWEθ

6: end procedure

Algorithm 2 MoPE-CLIP: Pruning with MoPE Metric
Input: CLIP model fφ, Validation SetDval, Training SetDtrain

Output: MoPE-CLIP model

1: Partition the Attention Heads in N × L modules
2: for l in 1, ..., L do
3: for head h in 1, ..., N do
4: ▷ run in parallel
5: MoPEh←MoPE(fφ, h, Dval)
6: Update Chead
7: end for
8: end for
9: CLIP f ′

φ← Rewire Neurons in FFN by gradient
10: Partition the FFN Neurons in N groups
11: for group n in 1, ..., N do
12: ▷ run in parallel
13: MoPEn←MoPE(f ′

φ, n, Dval)
14: Update Cneuron

15: end for
16: if Compression in fine-tuning stage then
17: MoPE-CLIPw fCw ← Prune the CLIP in width

and retrain on Dtrain

18: for layer l in 1, ..., L do
19: ▷ run in parallel
20: MoPEl←MoPE(fCw, l, Dval)
21: Update Clayer
22: end for
23: MoPE-CLIP← Prune the MPEE-CLIPw in depth

and retrain on Dtrain

24: else if Compression in pretraining stage then
25: for layer l in 1, ..., L do
26: ▷ run in parallel
27: MoPEl←MoPE(fφ, l, Dval)
28: Update Clayer
29: end for
30: MoPE-CLIP← Prune the CLIP in width and depth

and retrain on Dtrain

31: end if
32: return the MoPE-CLIP



C. More Experimental Results
C.1. Detailed Comparison with Baselines

We provide a more detailed comparison with DynaCLIPV ,
MagnCLIPV , and UPop in the following.

Pruning Ratios. To further evaluate our MoPE-CLIP per-
formance under different model sizes. We test six prun-
ing ratios with the model performance plotted in Fig. C1.
MoPE-CLIP consistently stands above all other baselines
(i.e., DynaCLIP and MagnCLIP) across different pruning
ratios. The gap becomes even larger for higher sparsities.

Figure C1. Comparsion of different pruning ratios.

Model Params MSCOCO (5K test set)
TR @1 IR @1

UPop-Teacher 856M 71.5 56.8
UPop-CLIP 280M ↓ 67% 56.1 ↓ 21% 41.1 ↓ 27%
Upop-CLIP (+KD) 280M ↓ 67% 58.6 ↓ 18% 44.3 ↓ 22%

MoPE-Teacher 390M 76.2 58.8
MoPE-CLIP 122M ↓ 69% 70.7 ↓ 7% 54.7 ↓ 7%

Table C4. UPop and MoPE-CLIP on MSCOCO.

Relative Comparison with UPop. We further compare
Upop with Knowledge Distillation in Tab. C4. MoPE-CLIP
is superior to Upop (+KD) both on the relative performance
drop and absolute task score, given a comparable relative
decrease (69% vs 67%) in the number of parameters. More-
over, MoPE-CLIP’s advantage is notable, as compressing
smaller original model sizes is more challenging.

C.2. Fine-tuning Stage Compression on Flickr30K

To demonstrate the robustness of the MoPE metric across
different data distributions, we further evaluate MoPE-CLIP
on Flickr30K Dataset during fine-tuning stage compression.

Results for Image-to-text Retrieval. Following the set-
ting in Section 4.1, we compress the vision encoder of

Approach Vision Encoder Flickr30K (1K test set)
Wdith Depth Parmas TR@1 TR@5 TR@10

Teacher Model 1024 24 304M 96.3 99.8 100.0

CLIP-ViT-B/32 768 12 88M 87.7 97.7 99.3

DynaCLIPV [17]
512 24 153M 92.7 99.4 99.8
384 24 115M 89.6 98.5 99.4
384 18 87M 84.5 97.3 98.5

UPop-CLIP [45] N/A N/A 474M‡ 93.2 99.4 99.8
N/A N/A 280M‡ 82.9 95.7 97.8

MoPE-CLIPV

512 24 153M 92.7 99.5 99.9
384 24 115M 91.1 98.9 99.7
384 18 87M 88.5 98.5 99.6

Table C5. Image-to-text retrieval results on the Flickr30K dataset.
The Params labeled as ‡ denote the parameters of the entire model.

Approach Text Encoder Flickr30K (1K test set)
Width Depth Params IR @1 IR @5 IR @10

Teacher Model 768 12 85M 84.7 97.4 99.0

CLIP-ViT-B/32 512 12 38M 74.7 93.4 96.9

DynaCLIPT [17] 384 12 42M 84.1 97.1 98.7
192 12 21M 80.3 95.7 98.0

MoPE-CLIPT
384 12 42M 85.1 97.4 99.1
192 12 21M 83.5 97.2 98.8

Table C6. Text-to-image retrieval results on the Flickr30K dataset.
Pruning is applied in the width direction.

fine-tuned CLIP-ViT-L14 (FT-L14) for image-to-text re-
trieval. We mainly compare the fine-tuned performance
of our MoPE-CLIPV with fine-tuned CLIP-ViT-B/32 (FT-
B32), DynaCLIPV , and UPop-CLIP [45] on the Flickr30K
dataset. In particular, we compute the loss gradient and
MoPE metric (TR Mean) in Flickr30K [38] validation
dataset for DynaCLIPV and MoPE-CLIPV . The results are
presented in Table C5. We could observe that once depth
pruning is added to DynaCLIPV , the TR@1 drops from
89.6% to 84.5%, while the MoPE-CLIPV with 87M vision
encoder maintains competitive retrieval and surpasses the
FT-B32. In addition, our MoPE-CLIPV with 115M vision
encoder termed an entire model of 234M parameters out-
performs the UPop-CLIP with 280M parameters by 8.2%
TR@1. These results indicate the superiority of the MoPE
metric across different downstream datasets.

Results for Text-to-image Retrieval. We compress the
text encoder of fine-tuned CLIP-ViT-L/14 for text-to-image
retrieval. The pruning and retraining remain the same as the
setting on the MSCOCO dataset and the results are illus-
trated in Table C6. The MoPE-CLIPT exhibits significant
performance on the Flickr30K dataset. Even at a 4x com-
pression ratio, the MoPE-CLIPT surpasses the FT-B32 by
8.8% IR@1 and DynaCLIPT by 3.2% IR@1. These supe-
rior results demonstrate that our MoPE-CLIPT provides a
powerful text encoder for the text-to-image retrieval task.
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Cosine similarity between matched and unmatched image-text features

Figure C2. Histograms of cosine similarities between matched
and unmatched image-text features. The green box represents the
similarity gap. MoPE-CLIPV preserves a similar space to FT-L14.

C.3. Further Discussion.

Similarity matrix indicates pruning is the best archi-
tecture. We compare and analyze the similarity matrix
of three architectures discussed in Section 2 since it di-
rectly influences retrieval performance. In particular, we
sample 5k image-text pairs from the MSCOCO [28] valida-
tion dataset and calculate the similarities between matched
image-text features and unmatched pairs, as done in pre-
vious works [49, 66]. Following [2], we suppose that the
retrieval performance is more influenced by the similarity
gap between matched and unmatched features. We com-
pare the MoPE-CLIPV with fine-tuned CLIP-ViT-L/14 (FT-
L14), fine-tuned CLIP-ViT-B/32 (FT-B32) and SE-CLIPV .
From Figure C2, we observe that FT-L14 has a larger gap
between two similarities compared with FT-B32, reflect-
ing its powerful performance. The pruned MoPE-CLIPV

shows a similar distribution and gap to FT-L14, while the
SE-CLIPV even closes the gap, indicating the performance
difference among these models. Therefore, MoPE-CLIPV ,
which preserves a similarity space like FT-L14, emerges as
the best compact model architecture.

Grad-CAM demonstrates MoPE-CLIP preserves more
important heads. To better understand the effect of our
MoPE metric, we use Grad-CAM [44] to visualize the re-
gions focused by DynaCLIPV and MoPE-CLIPV . In de-
tail, we select the model with a 115M vision encoder and
compute the Grad-CAM using self-attention maps averaged
over all attention heads in the last layer of the vision en-
coder. The gradients are acquired by contrastive loss Lcont.
From Figure C3, we could observe that the average atten-
tion map of MoPE-CLIPV is similar to original model (FT-
L14), but the DynaCLIPV misses some important regions,

“An old man sitting on a bench overlooking a lake.”

“A close up of an apple and a banana.”

Input Image FT-L14 MoPE-CLIPv DynaCLIPv

Figure C3. Grad-CAM visualization on the self-attention maps
corresponding to the caption input.

“two women are sitting on two horses”

Figure C4. Grad-CAM visualization of the last layer self-attention
maps for original FT-L14’s vision encoder. Red box denotes pre-
served heads based on MoPE-CLIPV . Yellow box denotes pre-
served heads based on DynaCLIPV . Orange box denotes the head
is preserved by two models simultaneously.

like the ”bench” in the top line and the ”apple” in the bottom
line. Furthermore, We visualize the Gram-CAM of each
head of the FT-L14 model and identify the preserved heads
by DynaCLIPV or MoPE-CLIPV . As shown in Figure C4,
MoPE-CLIPV preserves heads 3, 4, and 15, which corre-
spond to the crucial region of ”sitting on the horse.” Con-
versely, DynaCLIPV prunes these heads, leading to their ex-
clusion. This observation proves the precision of the MoPE
metric in identifying and preserving vital information.



Method Vision Enocder Text Encoder Params(M) MSCOCO (5K test set) Flickr30K (1K test set)
Width Depth Width Depth Vision + Text TR @1 TR @5 TR @10 IR @1 IR @5 IR @10 TR @1 TR @5 TR @10 IR @1 IR @5 IR @10

Pre-trained on WIT-400M
CLIP-ViT-L/14 [39] 1024 24 768 12 304 + 85 76.2 92.9 96.4 58.8 82.8 89.5 96.3 99.8 100.0 84.7 97.4 99.0
CLIP-ViT-B/32 [39] 768 12 512 12 88 + 38 66.2 87.7 92.8 49.4 75.8 84.7 87.7 97.7 99.3 74.7 93.4 96.9

Pre-trained on CC3M
DynaCLIPbase [17] 384 18 384 12 86 + 42 70.7 90.0 94.6 53.8 80.5 87.9 90.0 98.8 99.7 79.0 95.5 97.9
DynaCLIPsmall [17] 384 18 192 12 86 + 21 69.3 89.5 94.5 52.3 79.1 87.1 89.4 98.1 99.7 77.3 95.0 97.4
MoPE-CLIPbase 384 18 384 12 86 + 42 71.9 91.4 95.7 54.9 81.1 88.6 92.1 98.8 99.0 80.6 95.6 98.1
MoPE-CLIPsmall 384 18 192 12 86 + 21 71.2 90.9 95.0 53.7 80.5 87.9 90.8 98.6 99.6 79.3 95.5 97.9

Pre-trained on YFCC15M
CLIP-ViT-B/32† [39] 768 12 512 12 88 + 38 34.5 63.5 75.2 24.0 50.8 63.5 57.4 84.7 90.2 40.4 69.5 79.6
SLIP-ViT-B/32† [35] 768 12 512 12 88 + 38 43.7 71.8 82.4 31.0 58.8 70.3 68.9 91.9 95.1 51.0 79.5 86.8
DeCLIP-ViT-B/32† [27] 768 12 512 12 88 + 38 47.9 75.5 84.6 33.8 62.7 71.4 73.6 93.9 97.2 55.9 83.4 90.2
UniCLIP-ViT-B/32† [25] 768 12 512 12 88 + 38 52.7 78.6 87.4 37.6 66.3 77.0 77.9 95.1 98.0 61.0 85.9 92.2
MCD-ViT-B/32† [21] 768 12 512 12 88 + 38 55.6 81.2 89.5 38.2 67.4 78.5 79.3 95.2 98.0 63.1 87.2 92.3
MoPE-CLIPbase 384 18 384 12 86 + 42 74.3 92.3 95.9 56.7 82.0 89.4 93.3 99.4 99.9 82.0 96.4 98.7

Table C7. Fine-tuned image-text retrieval results on MSCOCO and Flickr30K datasets. DynaCLIP and MoPE-CLIP are pruned during the
pre-training stage and further fine-tuned on downstream datasets. † denotes the results are reported from [25, 56].

Method Vision Enocder Text Encoder Params (M) Training Details MSCOCO Flickr30K
Width Depth Width Depth Vision + Text Dataset GPU Batch size TR @1 IR @1 TR @1 IR @1

OpenCLIP [7] 12 12 8 12 88 + 39 LAION-2B 176x A100 33792 59.4 42.4 86.2 69.8
TinyCLIP [53] N/A N/A 8 6 39 + 19 YFCC15M 32x A100 4096 54.9 38.9 84.4 66.7
MoPE-CLIP 6 12 4 12 43 + 19 YFCC15M 8x V100 1024 56.2 39.4 84.5 67.4

‘

Table C8. Zero-shot image-text retrieval results of TinyCLIP and MoPE-CLIP. The original model is OpenCLIP-ViT-B/16 pre-trained on
the LAION-2B dataset.

Pruning Strategy MSCOCO Flickr30K Training cost
TR @1 IR @1 TR @1 IR @1 Epochs GPU Hours

Width-and-depth 52.8 37.3 82.8 66.7 20 320
Width-first-then-depth 54.3 38.1 84.1 67.9 40 640

Table C9. Comprasion of retrieval performance and training cost
in pruning 86M+42M MoPE-CLIPbase.

Width-and-depth pruning is preferred for pre-training
compression. Following Section 4.3, we extend our in-
vestigation to include both “width-and-depth pruning” and
“width-first-then-depth pruning” strategies during the pre-
training stage compression. We exclude the “depth-first-
then-width” strategy since it falls behind the ”width-first-
then-depth pruning” during the fine-tuning stage. As indi-
cated in Table C9, “width-first-then-depth pruning” shows
superior performance. However, the performance gap with
“width-and-depth pruning” narrows significantly compared
to the fine-tuning stage. Notably, “width-first-then-depth
pruning” requires an additional 20 epochs in pre-training,
which can be resource-intensive for many researchers. On
the other hand, “width-and-depth pruning” offers the dual
benefits of one-stage pruning for faster training and the uti-
lization of a larger set of image-text pairs, thereby yield-
ing competitive performance. Consequently, we advocate
for “width-and-depth pruning” during the pre-training stage
compression, as it strikes an optimal balance between train-
ing efficiency and model capability.

C.4. Fine-tuned Evaluation for Pre-training Stage

As we discussed in Section 2, whether pruning during the
pre-training stage and then fine-tuning outperforms prun-

ing during the fine-tuning stage is an interesting ques-
tion. Therefore, we further fine-tune the DynaCLIP and
MoPE-CLIP on downstream datasets and compare them
with other baselines. From Table C7, we observe that
the finetuned MoPE-CLIP and DynaCLIP exhibit signifi-
cant performance on two datasets and enlarge the gap com-
pared to fine-tuned CLIP-ViT-B/32. This indicates that
pruned models continually inherit the knowledge from the
fine-tuned CLIP-ViT-L/14 during full fine-tuning. Conse-
quently, we compare the fine-tuned MoPE-CLIPbase with
MoPE-CLIPV in Table 1 and find that the former show-
cases better TR@1. This indicates that pruning during the
pre-training stage is more effective because more image-
text pairs are included for learning, while the pruning dur-
ing fine-tuning stage exhibits competitive results with much
less training time. In addition, if we enlarge the pre-training
dataset to YFCC15M, fine-tuned UniCLIP [25] and MCD
[21] still fall short in comparison to MoPE-CLIPbase. This
aligns with the conclusion in Section 4.2 that pruning offers
a superior solution for obtaining compact VLP models.

C.5. MoPE on OpenCLIP

To assess our MoPE metric across various vision-language
models, we adopted the setting used in TinyCLIP [53] and
further compressed the OpenCLIP-ViT-B/16 [7], which is
pre-trained on the LAION-2B dataset [43]. Specifically, we
prune both the vision and language encoders to half their
original widths. The MoPE metric is computed by Re-
call Mean on the MSCOCO validation dataset, following
Section 4.2. We then pre-train the reduced model on the



YFCC15M dataset for 25 epochs, employing 16x NVIDIA
V100 GPUs, and the results are presented in Table C8. We
observe that our MoPE-CLIP, utilizing significantly fewer
GPU resources, surpasses TinyCLIP in retrieval tasks on
both MSCOCO and Flickr30K benchmarks, and narrows
the performance gap with OpenCLIP. However, due to lim-
ited computational resources, we were unable to increase
the batch size to 4096 as done in TinyCLIP. Therefore,
we anticipate further enhancements with the availability of
more GPUs. These experiments validate the effectiveness
of the MoPE metric across different VLP models and also
demonstrate that our MoPE-CLIP offers a straightforward
yet efficient approach for pre-training stage compression.
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