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A. Supplementary Material for
Instance Segmentation Model

A.1. Visible Ratio for Geometric Matching Score

In the Instance Segmentation Model (ISM) of our SAM-6D,
we introduce a visible ratio rvis to weight the reliability of
the geometric matching score sgeo. Specifically, given an
RGB crop Im of a proposal m and the best-matched tem-
plate Tbest of the target object O, along with their patch em-

beddings {fpatch
Im,j }N

patch
Im

j=1 and {fpatch
Tbest,i

}
Npatch

Tbest
i=1 , rvis is cal-

culated as the ratio of patches in Tbest that can find a cor-
responding patch in Im, estimating the occlusion degree of
O in Im. We can formulate the calculation of visible ratio
rvis as follows:

rvis =
1

Npatch
Tbest

Npatch
Tbest∑
i=1

rvis,i, (1)

where

rvis,i =

{
0 if svis,i < δvis
1 if svis,i ≥ δvis

,

and

svis,i = max
j=1,...,Npatch

Im

< fpatch
Im,j ,fpatch

Tbest,i
>

|fpatch
Im,j | · |fpatch

Tbest,i
|
. (2)

The constant threshold δvis is empirically set as 0.5 to de-
termine whether the patches in Tbest are occluded.

A.2. Template Selection for Object Matching

For each given target object, we follow [8] to first sample 42
well-distributed viewpoints defined by the icosphere primi-
tive of Blender. Corresponding to these viewpoints, we se-
lect 42 fully visible object templates from the Physically-
based Rendering (PBR) training images of the BOP bench-
mark [13] by cropping regions and masking backgrounds
using the ground truth object bounding boxes and masks,
respectively. These cropped and masked images then serve
as the templates of the target object, which are used to cal-
culate the object matching scores for all generated propos-
als. It’s noted that these 42 templates can also be directly
rendered using the pre-defined viewpoints.

A.3. Hyperparameter Settings

In the paper, we use SAM [6] based on ViT-H or FastSAM
based on YOLOv8x as the segmentation model, and ViT-
L of DINOv2 [10] as the description model. We utilize the
publicly available codes for autonomous segmentation from
SAM and FastSAM, with the hyperparameter settings dis-
played in Table 1.

A.4. More Quantitative Results

A.4.1 Detection Results

We compare our Instance Segmentation Model (ISM) with
ZeroPose [2] and CNOS [8] in terms of 2D object detection
in Table 2, where our ISM outperforms both methods owing
to the meticulously crafted design of object matching score.

A.4.2 Effects of Model Sizes

We draw a comparison across different model sizes for both
segmentation and description models on YCB-V dataset
in Table 3, which indicates a positive correlation between
larger model sizes and higher performance for both models.



Hyperparameter Setting

(a) SAM [6]

point per size 32
pred iou thresh 0.88
stability score thresh 0.85
stability score offset 1.0
box nms thresh 0.7
crop n layer 0
point grids None
min mask region area 0

(b) FastSAM [14]

iou 0.9
conf 0.05
max det 200

Table 1. Hyperparameter Settings of (a) SAM [6] and (b) Fast-
SAM [14] in their publicly available codes for autonomous seg-
mentation.
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Figure 1. Qualitative results of our Instance Segmentation Model
with or without the appearance matching score sappe.

A.5. More Qualitative Results

A.5.1 Qualitative Comparisons on Appearance
Matching Score

We visualize the qualitative comparisons of the appearance
matching score sappe in Fig. 1 to show its advantages in
scoring the proposals w.r.t. a given object in terms of ap-
pearance.

A.5.2 Qualitative Comparisons on Geometric Match-
ing Score

We visualize the qualitative comparisons of the geometric
matching score sgeo in Fig. 2 to show its advantages in scor-
ing the proposals w.r.t. a given object in terms of geometry,
e.g., object shapes and sizes.
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Figure 2. Qualitative results of our Instance Segmentation Model
with or without the geometric matching score sgeo.

A.5.3 More Qualitative Comparisons with Existing
Methods

To illustrate the advantages of our Instance Segmentation
Model (ISM), we visualize in Fig. 3 the qualitative compar-
isons with CNOS [8] on all the seven core datasets of the
BOP benchmark [13] for instance segmentation of novel
objects. For reference, we also provide the ground truth
masks, except for the ITODD and HB datasets, as their
ground truths are not available.

B. Supplementary Material for
Pose Estimation Model

B.1. Network Architectures and Specifics

B.1.1 Feature Extraction

In the Pose Estimation Model (PEM) of our SAM-6D, the
Feature Extraction module utilizes the base version of the
Visual Transformer (ViT) backbone [3], termed as ViT-
Base, to process masked RGB image crops of observed ob-
ject proposals or rendered object templates, yielding per-
pixel feature maps.

Fig. 4 gives an illustration of the per-pixel feature learn-
ing process for an RGB image within the Feature Extraction
module. More specifically, given an RGB image of the ob-
ject, the initial step involves image processing, including
masking the background, cropping the region of interest,
and resizing it to a fixed resolution of 224 × 224. The ob-
ject mask and bounding box utilized in the process can be
sourced from the Instance Segmentation Model (ISM) for
the observed scene image or from the renderer for the ob-
ject template. The processed image is subsequently fed into
ViT-Base to extract per-patch features using 12 attention
blocks. The patch features from the third, sixth, ninth, and
twelfth blocks are subsequently concatenated and passed
through a fully-connected layer. They are then reshaped



Method Segmentation BOP Dataset MeanModel LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V

ZeroPose [2] SAM [6] 36.7 30.0 43.1 22.8 25.0 39.8 41.6 34.1
CNOS [8] FastSAM [14] 43.3 39.5 53.4 22.6 32.5 51.7 56.8 42.8
CNOS [8] SAM [6] 39.5 33.0 36.8 20.7 31.3 42.3 49.0 36.1

SAM-6D FastSAM [14] 46.3 45.8 57.3 24.5 41.9 55.1 58.9 47.1
SAM-6D SAM [6] 46.6 43.7 53.7 26.1 39.3 53.1 51.9 44.9

Table 2. Object Detection results of different methods on the seven core datasets of the BOP benchmark [13]. We report the mean Average
Precision (mAP) scores at different Intersection-over-Union (IoU) values ranging from 0.50 to 0.95 with a step size of 0.05.

Segmentation Model Description Model APType #Param Type #Param

FastSAM-s 23 M ViT-S 21 M 43.1
ViT-L 300 M 54.0

FastSAM-x 138 M ViT-S 21 M 48.9
ViT-L 300 M 62.0

SAM-B 357 M ViT-S 21 M 44.0
ViT-L 300 M 55.8

SAM-L 1,188 M ViT-S 21 M 47.2
ViT-L 300 M 59.8

SAM-H 2,437 M ViT-S 21 M 47.1
ViT-L 300 M 60.5

Table 3. Quantitative comparisons on the model sizes of both
segmentation and description models on YCB-V. We report the
mean Average Precision (mAP) scores at different Intersection-
over-Union (IoU) values ranging from 0.50 to 0.95 with a step
size of 0.05.

Method Segmentation Server Time (s)Model

CNOS [8]
FastSAM [14]

Tesla V100 0.22
CNOS [8] DeForce RTX 3090 0.23
SAM-6D DeForce RTX 3090 0.45

CNOS [8]
SAM [6]

Tesla V100 1.84
CNOS [8] DeForce RTX 3090 2.35
SAM-6D DeForce RTX 3090 2.80

Table 4. Runtime comparisons of different methods for instance
segmentation of novel objects. The reported time is the average
per-image processing time across the seven core datasets of the
BOP benchmark [13].

and bilinearly interpolated to match the input resolution of
224×224 with 256 feature channels. Further specifics about
the network can be found in Fig. 4.

For a cropped observed RGB image, the pixel features
within the mask are ultimately chosen to correspond to the
point set transformed from the masked depth image. For ob-
ject templates, the pixels within the masks across views are
finally aggregated, with the surface point of per pixel known

from the renderer. Both point sets of the proposal and the
target object are normalized to fit a unit sphere by dividing
by the object scale, effectively addressing the variations in
object scales.

We use two views of object templates for training, and
42 views for evaluation as CNOS [8], which is the standard
setting for the results reported in this paper.

B.1.2 Coarse Point Matching

In the Coarse Point Matching module, we utilize T c Ge-
ometric Transformers [12] to model the relationships be-
tween the sparse point set Pc

m ∈ RNc
m×3 of the observed

object proposal m and the set Pc
o ∈ RNc

o×3 of the target
object O. Their respective features F c

m and F c
o are thus

improved to their enhanced versions F̃ c
m and F̃ c

o . Each of
these enhanced feature maps also includes the background
token. An additional fully-connected layer is applied to the
features both before and after the transformers. In this pa-
per, we use the upper script ‘c’ to indicate variables associ-
ated with the Coarse Point Matching module, and the lower
scripts ‘m’ and ‘o’ to distinguish between the proposal and
the object.

During inference, we compute the soft assignment ma-
trix Ãc ∈ R(Nc

m+1)×(Nc
o+1), and obtain two binary-value

matrices M c
m ∈ RNc

m×1 and M c
o ∈ RNc

o×1, denoting
whether the points in Pc

m and Pc
o correspond to the back-

ground, owing to the design of background tokens; ‘0’ indi-
cates correspondence to the background, while ‘1’ indicates
otherwise. We then have the probabilities P c ∈ RNc

m×Nc
o

to indicate the matching degree of the N c
m ×N c

o point pairs
between Pc

m and Pc
o , formulated as follows:

P c = M c
m · (Ãc[1 :, 1 :])γ ·M cT

o , (3)

where γ is used to sharpen the probabilities and set as 1.5.
The probabilities of points that have no correspondence,
whether in Pc

m or Pc
o , are all set to 0. Following this, the

probabilities P c are normalized to ensure their sum equals
1, and act as weights used to randomly select 6,000 triplets
of point pairs from the total pool of N c

m × N c
o pairs. Each
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Figure 3. Qualitative results on the seven core datasets of the BOP benchmark [13] for instance segmentation of novel objects.
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Figure 4. An illustration of the per-pixel feature learning process for an RGB image within the Feature Extraction module of the Pose
Estimation Model.
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Figure 5. An illustration of the positional encoding for a point set
with N points within the Fine Point Matching Module of the Pose
Estimation Model.

triplet, which consists of three point pairs, is utilized to cal-
culate a pose using SVD, along with a distance between the
point pairs based on the computed pose. Through this pro-
cedure, a total of 6,000 pose hypotheses are generated, and
to minimize computational cost, only the 300 poses with the
smallest point pair distances are selected. Finally, the ini-
tial pose for the Fine Point Matching module is determined
from these 300 poses, with the pose that has the highest pose
matching score being selected.

In the Coarse Point Matching module, we set T c = 3 and
N c

m = N c
o = 196, with all the feature channels designated

as 256. The configurations of the Geometric Transformers
adhere to those used in [12].

B.1.3 Fine Point Matching

In the Fine Point Matching module, we utilize T f Sparse-
to-Dense Point Transformers to model the relationships be-
tween the dense point set Pf

m ∈ RNf
m×3 of the observed

object proposal m and the set Pf
o ∈ RNf

o ×3 of the target
object O. Their respective features F f

m and F f
o are thus

improved to their enhanced versions F̃ f
m and F̃ f

o . Each of
these enhanced feature maps also includes the background
token. An additional fully-connected layer is applied to the
features both before and after the transformers. We use the
upper script ‘f ’ to indicate variables associated with the
Fine Point Matching module, and the lower scripts ‘m’ and
‘o’ to distinguish between the proposal and the object.

Different from the coarse module, we condition both fea-

tures F f
m and F f

o before applying them to the transformers
by adding their respective positional encodings, which are
learned via a multi-scale Set Abstract Level [11] from Pf

m

transformed by the initial pose and Pf
o without transforma-

tion, respectively. The used architecture for positional en-
coding learning is illustrated in Fig. 5. For more details,
one can refer to [11].

Another difference from the coarse module is the type of
transformers used. To handle dense relationships, we de-
sign the Sparse-to-Dense Point Transformers, which utilize
Geometric Transformers [12] to process sparse point sets
and disseminate information to dense point sets via Lin-
ear Cross-attention layers [4, 5]. The configurations of the
Geometric Transformers adhere to those used in [12]; the
point numbers of the sampled sparse point sets are all set
as 196. The Linear Cross-attention layer enables attention
along the feature dimension, and details of its architecture
can be found in Fig. 6; for more details, one can refer to
[4, 5].

During inference, similar to the coarse module, we com-
pute the soft assignment matrix Ãf ∈ R(Nf

m+1)×(Nf
o +1),

and obtain two binary-value matrices Mf
m ∈ RNf

m×1 and
Mf

o ∈ RNf
o ×1. We then formulate the probabilities P f ∈

RNf
m×Nf

o as follows:

P f = Mf
m · (Ãf [1 :, 1 :]) ·MfT

o . (4)

Based on P f , we search for the best-matched point in Pf
o

for each point in Pf
m, assigned with the matching prob-

ability. The final object pose is then calculated using a
weighted SVD, with the matching probabilities of the point
pairs serving as the weights.

Besides, we set T f = 3 and Nf
m = Nf

o = 2, 048, with
all the feature channels designated as 256. During training,
we follow [7] to obtain the initial object poses by augment-
ing the ground truth ones with random noises.

B.2. Training Objectives

We use InfoNCE loss [9] to supervise the learning of at-
tention matrices for both coarse and fine modules. Specifi-
cally, given two point sets Pm ∈ RNm×3 and Po ∈ RNo×3,
along with their enhanced features F̃m and F̃o, which are
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Figure 6. Left: The structure of Linear Cross-attention layer. Right: The structure of Linear Cross-attention.

learnt via the transformers and equipped with background
tokens, we compute the attention matrix A = F̃m × F̃ T

o ∈
R(Nm+1)×(No+1). Then A can be supervised by the follow-
ing objective:

L = CE(A[1 :, :], Ŷm) + CE(A[:, 1 :]T , Ŷo), (5)

where CE(·, ·) denotes the cross-entropy loss function.
Ŷm ∈ RNm and Ŷo ∈ RNo denote the ground truths for
Pm and Po. Given the ground truth pose R̂ and t̂, each
element ym in Ŷm, corresponding to the point pm in Pm,
could be obtained as follows:

ym =

{
0 if dk∗ ≥ δdis
k∗ if dk∗ < δdis

, (6)

where

k∗ = Argmink=1,...,Nm
||R̂(pm − t̂)− po,k||2,

and
dk∗ = ||R̂(pm − t̂)− po,k∗ ||2.

k∗ is the index of the closest point po,k∗ in Po to pm, while
dk∗ denotes the distance between pm and po,k∗ in the object
coordinate system. δdis is a distance threshold determining
whether the point pm has the correspondence in Po; we set
δdis as a constant 0.15, since both Pm and Po are normal-
ized to a unit sphere. The elements in Ŷo are also generated
in a similar way.

We employ the objective (5) upon all the transformer
blocks of both coarse and fine point matching modules, and
thus optimize the Pose Estimation Model by solving the fol-
lowing problem:

min
∑

l=1,...,Tc

Lc
l +

∑
l=1,...,Tf

Lf
l . (7)

where for the loss L in Eq. (5), we use the upper scripts ‘c’
and ‘f ’ to distinguish between the losses in the coarse and
fine point matching modules, respectively, while the lower
script ’l’ denotes the sequence of the transformer blocks in
each module.

B.3. More Quantitative Results

B.3.1 Effects of The View Number of Templates

We present a comparison of results using different views of
object templates in Table 5. As shown in the table, results
with only one template perform poorly as a single view can-
not fully depict the entire object. With an increase in the
number of views, performance improves. For consistency
with our Instance Segmentation Model and CNOS [8], we
utilize 42 views of templates as the default setting in the
main paper.



# View 1 2 8 16 42

AR 21.8 62.7 83.9 84.1 84.5

Table 5. Pose estimation results with different view numbers of
object templates on YCB-V. We report the mean Average Recall
(AR) among VSD, MSSD and MSPD.

B.3.2 Comparisons with OVE6D

OVE6D [1] is a classical method for zero-shot pose esti-
mation based on image matching, which first constructs a
codebook from the object templates for viewpoint rotation
retrieval and subsequently regresses the in-plane rotation.
When comparing our SAM-6D with OVE6D using their
provided segmentation masks (as shown in Table 6), SAM-
6D outperforms OVE6D on LM-O dataset, without the need
for using Iterative Closest Point (ICP) algorithm for post-
optimization.

Method LM-O

OVE6D [1] 56.1
OVE6D with ICP [1] 72.8
SAM-6D (Ours) 74.7

Table 6. Quantitative results of OVE6D [1] and our SAM-6D on
LM-O dataset. The evaluation metric is the standard ADD(-S)
for pose estimation. SAM-6D is evaluated with the same masks
provided by [1].

B.4. More Qualitative Comparisons with Existing
Methods

To illustrate the advantages of our Pose Estimation Model
(ISM), we visualize in Fig. 7 the qualitative comparisons
with MegaPose [7] on all the seven core datasets of the BOP
benchmark [13] for pose estimation of novel objects. For
reference, we also present the corresponding ground truths,
barring those for the ITODD and HB datasets, as these are
unavailable.
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Figure 7. Qualitative results on the seven core datasets of the BOP benchmark [13] for pose estimation of novel objects.
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