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A. SFT Blend for Ablation Study C. Varying LLMs

We used an in-house data blend for supervised fine-
tuning/instruction tuning during the ablation study. We fol-
lowed [5] to build the FLAN-style instructions from the train-
ing set of 18 visual language datasets, as shown in Table 1.
We may see that most of the datasets are in a VQA format.
For the final model, we also blend in the LLaVA-1.5 SFT
dataset [9], which has better quality and diversity (for exam-
ple, it contains visual reference data like RefCOCO [8, 10]).

Categories ‘ Datasets

Captioning | Image Paragraph Captioning, MSR-VTT, TextCaps

Reasoning | CLEVR, NLVR, VisualMRC

Translation | Multi30k

VQA ActivityNet-QA, DocVQA, GQA, iVQA,
MSRVTT-QA, MSVD-QA, OCR-VQA, ST-
VQA, VIQuAE, VQAV2, Visual Dialog

Table 1. The SFT blend we used during the ablation study.

B. Training Cost

We perform training on 16 A100 GPU nodes, each node
has 8 GPUs. The training hours for each stage of the 7B
model are: projector initialization: 4 hours; visual language
pre-training: 30 hours; visual instruction-tuning: 6 hours.
The training corresponds to a total of 5.1k GPU hours. Most
of the computation is spent on the pre-training stage.

We have not performed training throughput optimizations
like sample packing [6] or sample length clustering. We
believe we can reduce at least 30% of the training time with
proper optimization. We also notice that the training time is
much longer as we used a high image resolution of 336336
(corresponding to 576 tokens/image). We should be able to
reduce the training time by more than 50% by using lower-
resolution images for pre-training (e.g., 224 x224) and scale
up the resolution at the later stage of the training [4], which
we leave to future work.

For extra insights we here present the results with Vicuna-
1.5-7B as the new LLM backbone to verify if our pretraining
conclusions scale across LLMs. Firstly, we reproduce the
training recipe study (originally in Table ??) and report the
average 0/4-shot accuracy in Table 2 (left). We observed
the same conclusion that updating the LLM is important in
the pre-training stage. Secondly, we also provide the results
in the setting of Table ?? (as right of Table 2). The two
backbones achieved similar accuracy on the benchmarks.
Overall, our conclusions are general across LLM backbones.

VQA'* GQA VisWiz

Llama-27B 799 623 57.8
Vicuna7B 79.3 623 58.7

PreT SFT 0-shot 4-shot

X Vv 626 592
v vV 691 728

Table 2. Ablation and final performance with Vicuna-1.5-7B.

D. Details on COYO Subsampling

We were able to download 25M out of 30M images for
the MMC4-core dataset [15]. The COYO-700M dataset [3]
contains about 700M images. To maintain a similar dataset
size, we subsample 25M images from the COYO-700M
dataset. Specifically, we sort all the samples based on the
CLIP similarity between images and captions and keep the
25M images with the highest similarities. Samples with
a high CLIP similarity usually have better image-caption
correspondence.

E. More Qualitative Samples

Here we provide more qualitative samples that we were not
able to include in the main paper due to space limits. Many
of the image samples are taken from [2, 14].

Better world knowledge. Pre-training on a large-scale
corpus allows the model to have better visual-related world
knowledge. Here we take four landmark images from [14]


https://github.com/Efficient-Large-Model/VILA

Prompt: Which city is this landmark in?

<imgl>

LLaVA-1.5: The landmark is in [[OKyoMapan.

Ours: The landmark in the image is located in Taipei, Taiwan.

mgzs T
LLaVA-1.5: This landmark is in New York City.
Ours: This landmark is located in New York City.

Tdimgas T
LLaVA-1.5: This landmark is in New York City.
Ours: The landmark in the image is located in New York City.

LLaVA-1.5: This landmark is located in 0Ky, Japan.
Ours: This landmark is located in Kyoto, Japan.

Figure 1. Landmark city recognition. Visual-language pre-training
gives the model better world knowledge. It reduces the bias towards
answering “Tokyo” compared to LLaVA-1.5 [9]. We mark the
wrong responses in red. Samples are taken from [14].

(without curation) and ask the model which city is the land-
mark located in (Figure 1). VILA can correctly recognize
4 out of the 4 samples, while LLaVA-1.5 only gets 2 out of
the 4, with an output bias on more common cities like Tokyo
and New York.

Visual reference understanding. Our model can under-
stand visual reference overlaid on images and perform rea-
soning. We provide a sample of visual reference reasoning
in Figure 2 (from [14]). VILA is able to correctly figure out
what is in the circled glass, while LLaVA-1.5 failed.

More logical reasoning samples. We check VILA on the
most recent samples from Gemini’s release [1] in Figure 3.
VILA is able to understand the logic utilizing visual features
in detail, whereas the LLAVA-1.5 cannot yield reasonable
responses.

Using VILA for detailed captioning. People have been
using datasets like LAION [13] to train text-to-image gen-
erative models [11, 12]. The quality of the image-text pairs
can significantly affect the performance of the trained model.
Some captions in the training datasets are quite noisy: they
are either not quite related to the images or are too abbrevi-
ated and contain limited details. We show that we can use
VLM models to generate high-quality and detailed caption-
ing (Figure 4). We use a simple prompt “Describe the image
in detail.” to generate the captions. VILA can generate more
related descriptions compared to the original caption (sample
1) and provide more details compared to previous models
like BLIP-2 [7] (sample 2).

Visual input example: Understanding visual reference

User What is in the circled glass? Object 1 or 2?7 Describe what is
Object 1 and object 2. Then check what is in the circled glass.

GPT-4V Object 1 is a glass bottle of water. It is clear and has a blue label
on it. Object 2 is a glass bottle of Magna beer. It is green and
has a red and white label on it. In the circled glass, it appears to
be a clear liquid, likely water. So, it is likely that the contents of

the circled glass are from Object 1, the glass bottle of water.

LLaVA-1.5  Object 1 is a bottle of water, and Object 2 is a bottle of beer. The

circled glass contains the [JE8E-

Ours Object 1 is a bottle of water, and Object 2 is a bottle of beer. The
circled glass contains Object 1, which is a bottle of water.

Figure 2. Our model can understand visual reference overlaid on
images and perform reasoning.

More in-context learning samples. We provide more in-
context learning samples in Figure 5, including company
knowledge, object counting, and French poems. VILA
demonstrates strong in-context learning capabilities under
various demonstrations.

More VQA samples. We provide more VQA samples
in Figure 6. VILA is able to understand memes, reason on
multiple images or video frames, and provide help on corner
cases in autonomous driving.



Visual input example: Visual logic reasoning

User

TSN

.

N

Which of these cars is more aerodynamic? The one on the left
or the right? Explain why, using specific visual details.

Gemini

The car on the right is more aerodynamic. It has a lower profile
and a more streamlined shape. The car on the left has a higher
profile and a more boxy shape, which makes it less aecrodynamic.

LLaVA-1.5

The car on the right is more aerodynamic than the one on the

left. This is evident from the fact that [EICHORINCHSN S

BBEE. When a car is going downhill, it experiences less air
resistance, which allows it to maintain higher speeds with less
energy expenditure. In contrast, when a car is going uphill, it
encounters more air resistance, making it more challenging to
maintain speed and requiring more energy to overcome the resis-
tance. Therefore, the car on the right is more aerodynamic due
to the downhill slope, which allows it to travel more efficiently.

Ours

The car on the right is more aerodynamic than the one on the left.
This is because the car on the right has a more streamlined shape,
which reduces air resistance and drag. The car on the left has a
more traditional, boxy shape, which increases air resistance and
drag. The aerodynamic car on the right would be more efficient
and faster, while the car on the left would be slower and less
efficient.

Figure 3. Our model can understand visual details on images and
perform logical reasoning.

Example: Detailed Captioning

Original caption (LAION): Best Location in Sydney!!!

Ours: The image captures a beautiful nighttime scene of a city skyline
with a large body of water in front of it. The city is illuminated by the
lights of various buildings, creating a vibrant atmosphere. The water is
filled with numerous boats of different sizes.

BLIP-2: There is a mountain of meat and a river in the background
Ours: The image is a surreal and colorful scene featuring a landscape
made entirely of meat. The landscape is filled with various types of meat,
including bacon, ham, and sausage, creating a unique and eye-catching
scene. The meat is arranged in the form of mountains, hills, and valleys,
giving the impression of a fantasy world. In addition to the meat, there
are several birds scattered throughout the scene.

Figure 4. VILA can provide detailed captions. The raw captions
in datasets like LAION [13] can be noisy and irrelevant. VILA
can generate meaningful captions with more details compared to
BLIP-2 [7]. The results are obtained by prompting the model with
“Describe the image in detail.”.



Input few shot examples + target image Output

The company is «Dz The company is famous for its

famous for . . .
graphics processing units.

iPhone and Mac. NVIDIA

The company is
famous for its
search engine.

dogs: 2

Les sanglots longs
des violons de
I’automne blessent
mon coeur d’une
langueur
monotone.

Pour qui sont ces
serpents qui
sifflent sur vos
tétes?

Les flamands roses s'embrassent
avec passion, leurs cceurs se
touchant, leur amour se partageant.

Figure 5. In-context learning samples on company knowledge, object counting, and French poem. The predictions are from VILA-13B.

Example: VQA Samples

Q: Photo 1, at 10:30 am: <imgl>

Photo 2, at 12:45 pm: <img2>

Photo 3, at 3:45 pm: <img3>

What did I have for lunch, and what time was it?

Q: Can you explain the meme? A: I had a sandwich for lunch, and it was at 12:45 pm.
A: The meme depicts a man's reaction to the price of a computer
graphics card. In the first image, the man is smiling and appears excited
about the product. In the second image, he is shocked and disappointed
by the high price of the graphics card, which is $1,200. The meme is a
playful representation of the contrast between the man's initial
enthusiasm and his subsequent disappointment upon learning the cost of
the product.

$1,200

Q: What is unusual about this image?
A: The unusual aspect of this image is that a chair is flying through the
air on a highway, seemingly coming out of the back of a truck.

Q: What happens to the man after hitting the ball? Q: What should you do if you encounter this?

A: After hitting the ball, the man falls down onto the grass. A: If you encounter this situation, you should immediately stop your

Q: Why does the man fall to the grass? vehicle and move to a safe distance from the truck and the flying chair. It
A: The man falls to the grass because he is swinging his golf club too is essential to avoid any potential hazards and contact the authorities to
hard, causing him to lose his balance and fall. report the incident and ensure the safety of everyone involved.

Figure 6. VQA samples. VILA is able to understand memes, reason on multiple images or video frames, and provide help on corner cases in
autonomous driving. The answers are from VILA-13B.
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