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Figure 1. Complete ADF dataset example. Two examples of complete ADF training sets were presented. Here, Mall is the final filter
mask and equal to M th1

confM
th2
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dc Mocc. It is noted that Mall also uses Mocc, as explained in Section B.3.

A. Details of the Dataset ADF58

First of all we have to thank Fabio Tosi[13] for the photo
set (taken with a mobile phone, including static scenes both
indoors and outdoors), from which about 200 of our 300
scenes came from them. The remaining scenes were cap-
tured from existing Nerf datasets and handheld devices by
the authors of this article.

A.1. How ADFactory is different.

In previous self-supervised optical flow work[5, 14–16], al-
most all methods tended to design a customized miniatur-
ized network. This is easy to understand, as they train based
on indirect losses, making convergence difficult when the
network structure is complex. ADF is different. We have
demonstrated in experiments that it can efficiently train
complex baselines such as RAFT, Scale-flow, and GMFlow
(including Transformer). It is one of the few self-supervised
training methods that can be applied to most optical flow
baselines.

A.2. Dataset Example

In Fig. 1, we show examples of two complete dataset out-
puts, noting that there are reconstruction failures at both A

and B. Location A is the white wall behind the chair back-
rest, which caused an incorrect depth due to reconstruction
failure. Observing the corresponding Mdc mask, it was
found that the depth consistency at this location is very poor,
which is in line with our original design intention. B is a
pure black object on the floor, which has been filtered out in
both Mdc and Mconf .

ADF also provides the rate of change in depth (dynamic
foreground has yet to be added to the depth, but this is not
difficult). When training Scale-flow, we share a Mall with
optical flow.

A.3. Difficult Sample

At the beginning, the composition of the generated data
consisted of 50% difficult samples (with an average optical
flow value greater than 300 pixels) and 50% simple samples
(with an average optical flow value less than 20 pixels). We
found the network challenging to converge during training.
In the final generated version, we retained 15% of the dif-
ficult samples and achieved more ideal results. Although
most of the test data is simple, we believe it is necessary to
retain difficult samples, which can help the network better
handle fast moving small objects in the real world. In future
work, we will also consider creating difficult samples (mo-



𝒇𝒊→𝒋 𝑴𝒐𝒄𝒄 𝑴𝒂𝒍𝒍 𝑩𝒊𝒏𝒂𝒓𝒚 𝑨𝑶

𝑨𝑶𝑴𝒔𝒔𝒊𝒎 𝑴𝒄𝒐𝒏𝒇𝑴𝒅𝒄

𝒁𝒋𝒁𝒊𝑰𝒋𝑰𝒊

A B

0 10.25 0.5 0.75
𝑀௦௦௜௠ ,𝑀ௗ௖ ,𝑀௖௢௡௙ ,𝐴𝑂

C

Figure 2. AO failure. Binary AO is an AO result binarized with a threshold of 0.65. Comparing the C part in Binary AO and Mall, it can
be found that our metrics can filter out errors that AO cannot handle.

tion blur, smoke, etc.) to approximate real scenes further.

B. More Results
In this section, we have presented more results to answer
readers’ possible doubts, including: 1. Why is AO not ef-
fective? 2. Visualization of typical scenes. 3. Occlusion.
4. Detailed comparison results of ADF in optical flow base-
line. 5. Reconstruction of vehicles.

B.1. Ambient Occlusion (AO)

This section mainly explains why we did not use the com-
monly used AO mask to screen for poor data. Firstly, let
us review the definition of AO: the probabilities of the ex-
istence of a surface from the observation point to the depth
of the ray. It reveals whether there will be floating objects
in the air, which reflects the reconstruction quality of the
neural field. However, more is needed for a comprehensive
evaluation of the dataset. We summarize the following rea-
sons:
• The AO indicator is not applicable to anti-aliasing meth-

ods because the smoothness of anti-aliasing results in
high AO values even at the correct position. As shown
in Fig. 2 (AO), the value of AO is much higher than the
indicator we proposed, and it contains much noise, mak-
ing it challenging to detect actual errors.

• AO cannot take effect when there is an error in the second
frame. As shown in Fig. 2 A, the image of the first frame
is normal at this time, but there is a significant depth error
in the second frame. Simply measuring the reconstruc-
tion quality of the first frame is meaningless, but Mdc and
Mssim can easily identify this geometric inconsistency.

• When the reconstruction field is stable, but reconstruction
error occurs, AO cannot take effect. As shown in Fig. 2

B, there is clearly an anomalous depth in the depth field,
but its radiation field is stable. Neither AO nor Mconf can
identify the issue, but Mdc and Mssim can easily identify
it.

Observation of Fig. 2 C, our comprehensive indicator Mall

successfully removed all outliers and retained geometrically
stable and high-quality data.

B.2. Visualization

We presented several typical real-world zero-shot scenes in
the demo folder, including:
• Occlusion: libby
• Portrait + large movements: breakdance; breakdance-

flare; motocross-bumps; soapbox
• Fluctuating water surface: blackswan; flamingo
• Small amplitude movement: camel
• Traffic Scenarios: train; car-roundabout

Except for traffic scenes, our method subjectively has
higher clarity and accuracy than supervised training meth-
ods ( training process of supervised methods is C+T/S →
K15). This is not difficult to understand, as existing real-
world datasets mainly focus on driving scenarios (actually
only driving scenarios).

B.3. Occlusion

Although we did not pay attention to occlusion, the method
trained by ADF still has good anti-occlusion performance.
As shown in Fig. 3, our ADF method performs amazingly
when there is a large amount of occlusion in a zero shot
scene.

In the final training version, we used all masks (including
Mocc) because we found in the experiment that adding Mocc

did improve a small amount of performance and did not



Table 1. Evaluation of Optical Flow. The best results in the same category are bolded.

K15 K12 K15-test

Training type Method Source Training data Flepe Fall Flepe Fall Fall

Supervised generalization
LiteFlowNet2[2] TPAMI2020 C + T/S 8.97 25.9 3.42 - -

VCN[17] NeurIPS2019 C + T/S 8.36 25.1 - - -
RAFT[12] ECCV2020 C + T/S 5.04 17.4 - - -

Self-supervised fine-tuning

UFlow[5] ECCV2020 Km+Kraw 2.71 - 1.68 - 11.13
MDFlow-fast[6] TCSVT2022 Km 4.44 12.3 1.83 6.8 -

UPFlow[10] CVPR2021 Km+Kraw 2.45 - 1.27 - 9.38
SMMSF[3] CVPR2021 Km+Kraw 6.04 18.81 - - 15.97

Self-supervised generalization

COTR[4] ICCV2021 MD 6.12 16.9 2.26 10.5 -
GLU-Net[14] CVPR2020 COCO 7.49 33.83 3.14 19.76 -
PDC-Net+[16] TPAMI2023 COCO 4.53 12.62 1.76 6.6 -
PDC-Net[15] CVPR2021 COCO 5.22 15.13 2.08 7.98 -

MDFlow-fast[6] TCSVT2022 S 10.05 23.12 3.49 12.17 -
MDFlow-fast[6] TCSVT2022 GTA5 9.13 25.01 3.85 14.33 -
Scale-flow [9] MM2022 ADF58(ours) 3.88 13.36 1.59 6.97 13.47

RAFT [12] ECCV2020 ADF58(ours) 4.17 13.9 1.59 6.43 13.41

reduce the method’s estimation ability for occluded parts.
This mainly stems from three points:

• The motion foreground Mf obscures the background, and
the occlusion does not disappear.

• Because a large number of training samples will be gen-
erated in one scene, covering all parts of the scene, even
if a certain frame is partially occluded, the occluded part
can still be learned in other frames.

• Mocc can assist in removing some erroneous depth results
(occlusion caused by incorrect depth). As shown in Fig.
2 , Mocc removed the error incorrect in part C.

B.4. Optical Flow Performance

This section extends Tab.3 in the main text, showcasing
more detailed results. Firstly, let us briefly introduce the
training data used and the evaluation items.
• C: Flyingchairs for Flyingthings dataset[11].
• T: Flyingthings3D for Flyingthings dataset[11].
• S: Sintel dataset generated from movie scenes[1].
• K15: 200 images from KITTI 2015 training set1.
• K12: 194 images from KITTI 2012 training set2.
• Km: Multi-frame images of K15.
• Kraw: KITTI raw data3.

1https://www.cvlibs.net/datasets/kitti/eval_
scene_flow.php

2https://www.cvlibs.net/datasets/kitti/eval_
stereo_flow.php?benchmark=flow

3https://www.cvlibs.net/datasets/kitti/raw_
data.php

• K15-test: KITTI15 official testing benchmark4.
• MD: MegaDepth[7].
• COCO: Semantic Segmented Image Dataset[8].
• GTA5: From game GTA5, including game graphics and

corresponding realistic depths.
Evaluation performance In the group of self-

supervised generalization, our ADF58 always maintains op-
timal accuracy in most cases, proving our scheme’s superi-
ority in terms of performance.

From the perspective of training modes, the performance
of the RAFT method trained by ADF also surpasses (5.04
v.s. 4.17; 17.4 v.s. 13.9) the pre-training method based on
synthetic data (C+T/S), which proves the excellent potential
of the ADF scheme as a universal large model pre-training
scheme. Moreover, more importantly, ADF is an easily ex-
pandable solution that can quickly expand excellent optical
flow datasets from monocular videos at a meagre cost, fur-
ther enhancing the dataset’s size and the semantic priors it
contains.

B.5. Rebuilding Vehicles

From the results in the more results folder, it can be seen
that the performance of ADF in driving scenarios is signif-
icantly limited compared to daily scenarios. As shown in
Fig. 4, although the correct RGB image Ii can be recon-
structed, the depth value Zi at the car window needs to be
corrected. This defect directly results in most labels being
filtered out by the mask in the vehicle scene, making it im-

4https://www.cvlibs.net/datasets/kitti/eval_
scene_flow.php?benchmark=flow

https://www.cvlibs.net/datasets/kitti/eval_scene_flow.php
https://www.cvlibs.net/datasets/kitti/eval_scene_flow.php
https://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow
https://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow
https://www.cvlibs.net/datasets/kitti/raw_data.php
https://www.cvlibs.net/datasets/kitti/raw_data.php
https://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
https://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
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Figure 3. Occlusion in zero shot generalization scenes. When faced with unseen obstacles (tree trunks, iron pillars), the algorithm trained
by ADF still exhibits stunning visual performance (this image is from libby.mp4 in the demo folder).

𝑰𝒊 𝒁𝒊 𝑴𝒄𝒐𝒏𝒇 𝑴𝒂𝒍𝒍

Figure 4. Reconstruction of vehicles. Zip-Nerf cannot accurately estimate the depth of transparent and reflective surfaces, making it
challenging to generate a dataset about vehicles.

possible to conduct sufficient training. We will attempt to
improve this defect in future work by using more advanced
Nerf models.
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