
Align Your Gaussians:
Text-to-4D with Dynamic 3D Gaussians and Composed Diffusion Models

Huan Ling1,2,3 * Seung Wook Kim1,2,3 * Antonio Torralba4 Sanja Fidler1,2,3 Karsten Kreis1

1NVIDIA 2Vector Institute 3University of Toronto 4MIT

Project page: https://research.nvidia.com/labs/toronto-ai/AlignYourGaussians/

Figure 1. Text-to-4D synthesis with Align Your Gaussians (AYG). Top: Different dynamic 4D sequences. Dotted lines represent
dynamics of deformation field. Bottom: Multiple dynamic 4D objects are composed within a large dynamic scene; two time frames shown.

Abstract

Text-guided diffusion models have revolutionized image
and video generation and have also been successfully used
for optimization-based 3D object synthesis. Here, we in-
stead focus on the underexplored text-to-4D setting and syn-
thesize dynamic, animated 3D objects using score distilla-
tion methods with an additional temporal dimension. Com-
pared to previous work, we pursue a novel compositional
generation-based approach, and combine text-to-image,
text-to-video, and 3D-aware multiview diffusion models to
provide feedback during 4D object optimization, thereby si-
multaneously enforcing temporal consistency, high-quality
visual appearance and realistic geometry. Our method,
called Align Your Gaussians (AYG), leverages dynamic 3D
Gaussian Splatting with deformation fields as 4D represen-
tation. Crucial to AYG is a novel method to regularize the

distribution of the moving 3D Gaussians and thereby sta-
bilize the optimization and induce motion. We also pro-
pose a motion amplification mechanism as well as a new
autoregressive synthesis scheme to generate and combine
multiple 4D sequences for longer generation. These tech-
niques allow us to synthesize vivid dynamic scenes, out-
perform previous work qualitatively and quantitatively and
achieve state-of-the-art text-to-4D performance. Due to the
Gaussian 4D representation, different 4D animations can
be seamlessly combined, as we demonstrate. AYG opens
up promising avenues for animation, simulation and digital
content creation as well as synthetic data generation.

1. Introduction
Generative modeling of dynamic 3D scenes has the poten-
tial to revolutionize how we create games, movies, simu-

*Equal contribution.

1

https://research.nvidia.com/labs/toronto-ai/AlignYourGaussians/

Figure 2. Text-to-4D synthesis with
AYG. We generate dynamic 4D scenes
via score distillation. We initialize the 4D
sequence from a static 3D scene (gener-
ated first, Fig. 3), which is represented
by 3D Gaussians with means µi, scales
σi, opacities ηi and colors ℓi. Consec-
utive rendered frames x

cj
τj from the 4D

sequence at times τj and camera posi-
tions cj are diffused and fed to a text-
to-video diffusion model [7] (green ar-
rows), which provides a distillation gra-
dient that is backpropagated through the
rendering process into a deformation field
∆(x, y, z, τ) (dotted lines) that captures
scene motion. Simultaneously, random
frames x̃

c̃j
τj are diffused and given to a

text-to-image diffusion model [70] (red
arrows) whose gradients ensure that high
visual quality is maintained frame-wise.

lations, animations and entire virtual worlds. Many works
have shown how a wide variety of 3D objects can be synthe-
sized via score distillation techniques [10, 11, 31, 41, 52, 62,
79, 85, 88, 92, 109], but they typically only synthesize static
3D scenes, although we live in a moving, dynamic world.
While image diffusion models have been successfully ex-
tended to video generation [1, 7, 22, 28, 78, 90, 91, 107],
there is little research on similarly extending 3D synthesis
to 4D generation with an additional temporal dimension.

We propose Align Your Gaussians (AYG), a novel
method for 4D content creation. In contrast to previous
work [79], we leverage dynamic 3D Gaussians [36] as back-
bone 4D representation, where a deformation field [59, 63]
captures scene dynamics and transforms the collection of
3D Gaussians to represent object motion. AYG takes a
compositional generation-based perspective and leverages
the combined gradients of latent text-to-image [70], text-to-
video [7] and 3D-aware text-to-multiview-image [76] dif-
fusion models in a score distillation-based synthesis frame-
work. A 3D-aware multiview diffusion model and a regu-
lar text-to-image model are used to generate an initial high-
quality 3D shape. Afterwards, we compose the gradients
of a text-to-video and a text-to-image model; the gradients
of the text-to-video model optimize the deformation field to
capture temporal dynamics, while the text-to-image model
ensures that high visual quality is maintained for all time
frames (Fig. 2). To this end, we trained a dedicated text-to-
video model; it is conditioned on the frame rate and can cre-
ate useful gradients both for short and long time intervals,
which allows us to generate long and smooth 4D sequences.

We developed several techniques to ensure stable opti-
mization and learn vivid dynamic 4D scenes in AYG: We
employ a novel regularization method that uses a modi-
fied version of the Jensen-Shannon divergence to regular-
ize the locations of the 3D Gaussians such that the mean
and variance of the set of 3D Gaussians is preserved as

they move. Furthermore, we use a motion amplification
method that carefully scales the gradients from the text-to-
video model and enhances motion. To extend the length
of the 4D sequences or combine different dynamic scenes
with changing text guidance, we introduce an autoregres-
sive generation scheme which interpolates the deformation
fields of consecutive sequences. We also propose a new
view-guidance method to generate consistent 3D scenes for
initialization of the 4D stage, and we leverage the concur-
rent classifier score distillation method [102].

We find that AYG can generate diverse, vivid, detailed
and 3D-consistent dynamic scenes (Fig. 1), achieving state-
of-the-art text-to-4D performance. We also show long,
autoregressively extended 4D scenes, including ones with
varying text guidance, which has not been demonstrated be-
fore. A crucial advantage of AYG’s 4D Gaussian backbone
representation is that different 4D animations can trivially
be combined and composed together, which we also show.

We envision broad applications in digital content cre-
ation, where AYG takes a step beyond the literature on text-
to-3D and captures our world’s rich dynamics. Moreover,
AYG can generate 4D scenes with exact tracking labels for
free, a promising feature for synthetic data generation.

Contributions. (i) We propose AYG, a system for text-
to-4D content creation leveraging dynamic 3D Gaussians
with deformation fields as 4D representation. (ii) We show
how to tackle the text-to-4D task through score distillation
within a new compositional generation framework, com-
bining 2D, 3D, and video diffusion models. (iii) To scale
AYG, we introduce a novel regularization method and a
new motion amplification technique. (iv) Experimentally,
we achieve state-of-the-art text-to-4D performance and gen-
erate high-quality, diverse, and dynamic 4D scenes. (v) For
the first time, we also show how our 4D sequences can
be extended in time with a new autoregressive generation
scheme and even creatively composed in large scenes.

2

2. Background
3D Gaussian Splatting [36] represents 3D scenes by N
3D Gaussians with positions µi, covariances Σi, opacities
ηi and colors ℓi (Fig. 2). Rendering corresponds to projec-
tion of the 3D Gaussians onto the 2D camera’s image plane,
producing 2D Gaussians with projected means µ̂i and co-
variances Σ̂i. The color C(p) of image pixel p can be cal-
culated through point-based volume rendering [111] as

C(p) =
N∑
i=1

ℓiαi

i−1∏
j=1

(1− αj) , (1)

αi = ηi exp
[
−1

2
(p− µ̂i)

⊤
Σ̂−1

i (p− µ̂i)

]
, (2)

where j iterates over the Gaussians along the ray through
the scene from pixel p until Gaussian i. To accelerate ren-
dering, the image plane can be divided into tiles, which
are processed in parallel. Initially proposed for 3D scene
reconstruction, 3D Gaussian Splatting uses gradient-based
thresholding to densify areas that need more Gaussians to
capture fine details, and unnecessary Gaussians with low
opacity are pruned every few thousand optimization steps.

Diffusion Models and Score Distillation Sampling.
Diffusion-based generative models (DMs) [18, 27, 57, 80,
81] use a forward diffusion process that gradually perturbs
data, such as images or entire videos, towards entirely ran-
dom noise, while a neural network is learnt to denoise and
reconstruct the data. DMs have also been widely used for
score distillation-based generation of 3D objects [62]. In
that case, a 3D object, represented for instance by a neural
radiance field (NeRF) [54] or 3D Gaussians [36], like here,
with parameters θ is rendered from different camera views
and the renderings x are diffused and given to a text-to-
image DM. In the score distillation sampling (SDS) frame-
work, the DM’s denoiser is then used to construct a gradient
that is backpropagated through the differentiable rendering
process g into the 3D scene representation and updates the
scene representation to make the scene rendering look more
realistic, like images modeled by the DM. Rendering and
using DM feedback from many different camera perspec-
tives then encourages the scene representation to form a ge-
ometrically consistent 3D scene. The SDS gradient [62] is

∇θLSDS(x = g(θ)) = Et,ϵ

[
w(t) (ϵ̂ϕ(zt, v, t)− ϵ)

∂x

∂θ

]
,

where x denotes the 2D rendering, t is the time up to which
the diffusion is run to perturb x, w(t) is a weighting func-
tion, and zt is the perturbed rendering. Further, ϵ̂ϕ(zt, v, t)
is the DM’s denoiser neural network that predicts the dif-
fusion noise ϵ. It is conditioned on zt, the diffusion time t
and a text prompt v for guidance. Classifier-free guidance
(CFG) [26] typically amplifies the text conditioning.

Figure 3. In AYG’s initial 3D stage we synthesize a static 3D
scene leveraging a text-guided multiview diffusion model [76] and
a regular text-to-image model [70]. The text-to-image model re-
ceives viewing angle-dependent text prompts and leverages view
guidance (Sec. 3.4). See Fig. 2 for 4D stage and descriptions.

2.1. Related Work

See Supp. Material for an extended discussion. Here, we
only briefly mention the most relevant related literature.

As discussed, AYG builds on text-driven im-
age [5, 14, 21, 61, 67, 70, 72, 98], video [1, 7,
22, 25, 28, 38, 78, 90, 91, 94, 107] and 3D-aware
DMs [42, 44, 45, 56, 64, 75, 76, 104], uses score distillation
sampling [10, 11, 17, 31, 41, 48, 52, 62, 85, 88, 92, 96, 109]
and leverages 3D Gaussian Splatting [36] as well as defor-
mation fields [8, 59, 60, 63, 84] for its 4D representation.
The concurrent works DreamGaussian [83], GSGEN [12]
and GaussianDreamer [101] use 3D Gaussian Splatting to
synthesize static 3D scenes, but do not consider dynamics.
Dynamic 3D Gaussian Splatting has been used for 4D
reconstruction [50, 93, 110], but not for 4D generation. The
idea to compose the gradients of multiple DMs has been
used before for controllable image generation [19, 43], but
has received little attention in 3D or 4D synthesis.

Most related to AYG is Make-A-Video3D (MAV3D) [79],
to the best of our knowledge the only previous work
that generates dynamic 4D scenes with score distillation.
MAV3D uses NeRFs with HexPlane [9] features as 4D
representation, in contrast to AYG’s dynamic 3D Gaus-
sians, and it does not disentangle its 4D representation into
a static 3D representation and a deformation field model-
ing dynamics. MAV3D’s representation prevents it from
composing multiple 4D objects into large dynamic scenes,
which our 3D Gaussian plus deformation field representa-
tion easily enables, as we show. Moreover, MAV3D’s se-
quences are limited in time, while we show a novel au-
toregressive generation scheme to extend our 4D sequences.

3

Figure 4. AYG’s JSD-based regular-
ization of the evolving 4D Gaussians
(see Sec. 3.4) calculates the 3D mean ντ

and diagonal covariance matrix Γτ of the
set of dynamic 3D Gaussians at different
times τ of the 4D sequence and regular-
izes them to not vary too much.

AYG outperforms MAV3D qualitatively and quantitatively
and synthesizes significantly higher-quality 4D scenes. Our
novel compositional generation-based approach contributes
to this, which MAV3D does not pursue. Finally, instead of
regular SDS, used by MAV3D, in practice AYG employs
classifier score distillation [102] (see Sec. 3.4).

3. Align Your Gaussians
In Sec. 3.1, we present AYG’s 4D representation, and in
Sec. 3.2, we introduce its compositional generation frame-
work with multiple DMs. In Sec. 3.3, we lay out AYG’s
score distillation framework in practice, and in Sec. 3.4, we
discuss several novel methods and extensions to scale AYG.

3.1. AYG’s 4D Representation

AYG’s 4D representation combines 3D Gaussian Splat-
ting [36] with deformation fields [59, 63] to capture the
3D scene and its temporal dynamics in a disentangled man-
ner. Specifically, each 4D scene consists of a set of N 3D
Gaussians as in Sec. 2. Following Kerbl et al. [36], we
also use two degrees of spherical harmonics to model view-
dependent effects, this is, directional color, and thereby im-
prove the 3D Gaussians’ expressivity. Moreover, we re-
strict the 3D Gaussians’ covariance matrices to be isotropic
with scales σi. We made this choice as our 3D Gaussians
move as a function of time and learning expressive dynam-
ics is easier for spherical Gaussians. We denote the col-
lection of learnable parameters of our 3D Gaussians as θ.
The scene dynamics are modeled by a deformation field
∆Φ(x, y, z, τ) = (∆x,∆y,∆z), defined through a multi-
layer perceptron (MLP) with parameters Φ. Specifically,
for any 3D location (x, y, z) and time τ , the deformation
field predicts a displacement (∆x,∆y,∆z). The 3D Gaus-
sians smoothly follow these displacements to represent a
moving and deforming 4D scene (Fig. 2). Note that in prac-
tice we preserve the initial 3D Gaussians for the first frame,
i.e. ∆Φ(x, y, z, 0) = (0, 0, 0), by setting ∆Φ(x, y, z, τ) =
(ξ(τ)∆x, ξ(τ)∆y, ξ(τ)∆z) where ξ(τ) = τ0.35 such that
ξ(0) = 0 and ξ(1) = 1. Following Luiten et al. [50], we
regularize the deformation field so that nearby Gaussians
deform similarly (“rigidity regularization”, see Supp. Mat.).

Apart from the intuitive decomposition into a backbone
3D representation and a deformation field to model dynam-
ics, a crucial advantage of AYG’s dynamic 3D Gaussian-
based representation is that different dynamic scenes, each
with its own set of Gaussians and deformation field, can be

Figure 5. AYG’s autoregressive extension scheme interpolates
the deformation fields of an initial and an extended 4D sequence
within an overlap interval between the two sequences (Sec. 3.4).

easily combined, thereby enabling promising 3D dynamic
content creation applications (see Fig. 1). This is due to the
explicit nature of this representation, in contrast to typical
NeRF-based representations. Moreover, learning 4D scenes
with score distillation requires many scene renderings. This
also makes 3D Gaussians ideal due to their rendering effi-
ciency [36]. Note that early on we also explored MAV3D’s
HexPlane- and NeRF-based 4D representation [79], but we
were not able to achieve satisfactory results.

3.2. Text-to-4D as Compositional Generation

We would like AYG’s synthesized dynamic 4D scenes to
be of high visual quality, be 3D-consistent and geometri-
cally correct, and also feature expressive and realistic tem-
poral dynamics. This suggests to compose different text-
driven DMs during the distillation-based generation to cap-
ture these different aspects. (i) We use the text-to-image
model Stable Diffusion (SD) [70], which has been trained
on a broad set of imagery and provides a strong general im-
age prior. (ii) We also utilize the 3D-aware text-conditioned
multi-view DM MVDream [76], which generates multi-
view images of 3D objects, was fine-tuned from SD on
the object-centric 3D dataset Objaverse [15, 16] and pro-
vides a strong 3D prior. It defines a distribution over four
multiview-consistent images corresponding to object ren-
derings from four different camera perspectives c1, ..., c4.
Moreover, we train a text-to-video DM, following Vide-
oLDM [7], but with a larger text-video dataset (HDVG-
130M [90] and Webvid-10M [4]) and additional condi-
tioning on the videos’ frame rate (see Supp. Material
for details). This video DM provides temporal feedback
when rendering 2D frame sequences from our dynamic 4D
scenes. All used DMs are latent DMs [70, 86], which means
that in practice we first encode renderings of our 4D scenes
into the models’ latent spaces, calculate score distillation
gradients there, and backpropagate them through the mod-
els’ encoders. All DMs leverage the SD 2.1 backbone and
share the same encoder. To keep the notation simple, we do

4

Figure 6. Text-to-4D synthesis with AYG. Various samples shown in two views each. Dotted lines denote deformation field dynamics.

not explicitly incorporate the encoding into our mathemati-
cal description below and the visualizations (Figs. 2 and 3).

We disentangle optimization into first synthesizing a
static 3D Gaussian-based object θ, and then learning the
deformation field Φ to add scene dynamics.

Stage 1: 3D Synthesis (Fig. 3). We first use MV-
Dream’s multiview image prior to generate a static 3D scene
via score distillation (Supp. Mat. for details). Since MV-
Dream on its own would generate objects in random ori-
entations, we enforce a canonical pose by combining MV-
Dream’s gradients with those of regular SD, while augment-
ing the text-conditioning for SD with directional texts “front
view”, “side view”, “back view” and “overhead view” [62].
Formally, we can derive a score distillation gradient (see
Sec. 3.3) by minimizing the reverse Kulback-Leibler diver-
gence (KLD) from the rendering distribution to the product
of the composed MVDream and SD model distributions

KL
(
qθ

(
{zci}4, {z̃c̃j}K

) ∣∣∣∣∣∣∣∣pα3D ({zci}4)
K∏
j=1

pβim
(
z̃c̃j

))
,

similar to Poole et al. [62] (App. A.4). Here, p3D({zci}4)
represents the MVDream-defined multiview image distri-
bution over four diffused renderings from camera views ci,

denoted as the set {zci}4 (we omit the diffusion time t sub-
script for brevity). Moreover, pim(z̃

c̃j) is the SD-based gen-
eral image prior and {z̃c̃j}K is another set of K diffused
scene renderings. In principle, the renderings for SD and
MVDream can be from different camera angles ci and c̃j ,
but in practice we choose K=4 and use the same render-
ings. Furthermore, α and β are adjustable temperatures of
the distributions p3D and pim, and qθ denotes the distribu-
tion over diffused renderings defined by the underlying 3D
scene representation θ, which is optimized through the dif-
ferentiable rendering. We also use the Gaussian densifica-
tion method discussed in Sec. 2 (see Supp. Material).

Stage 2: Adding Dynamics for 4D Synthesis (Fig. 2).
While in stage 1, we only optimize the 3D Gaussians, in
stage 2, the main 4D stage, we optimize (only) the defor-
mation field Φ to capture motion and extend the static 3D
scene to a dynamic 4D scene with temporal dimension τ .
To this end, we compose the text-to-image and text-to-video
DMs and formally minimize a reverse KLD of the form

KL
(
qΦ

(
{zciτi}F , {z̃

c̃j
τ̃j
}M

) ∣∣∣∣∣∣∣∣pγvid

(
{zciτi}F

) M∏
j=1

pκim

(
z̃
c̃j
τ̃j

))
,

where pvid({zciτi}F) is the video DM-defined distribution

5

Figure 7. Autoregressively extended text-to-4D synthesis. AYG
is able to autoregressively extend dynamic 4D sequences, combine
sequences with different text-guidance, and create looping anima-
tions, returning to the initial pose (also see Supp. Video).

over F 4D scene renderings {zciτi}F taken at times τi and
camera angles ci (F=16 for our model). Similar to before,
M additional renderings are given to the SD-based general
image prior, and γ and κ are temperatures. The renderings
{z̃c̃jτ̃j}M fed to regular SD can be taken at different times τ̃j
and cameras c̃j than the video model frames, but in practice
M=4 and we use three random renderings as well as the
8th middle frame among the ones given to the video model.
qΦ defines the distribution over renderings by the 4D scene
with the learnable deformation field parameters Φ. We
could render videos from the 4D scene with a fixed cam-
era, but in practice dynamic cameras, i.e. varying ci, help
to learn more vivid 4D scenes, similar to Singer et al. [79].

Moreover, following Singer et al. [79], our video DM
is conditioned on the frame rate (fps) and we choose the
times 0 ≤ τi ≤ 1 accordingly by sampling fps ∈ {4, 8, 12}
and the starting time. We render videos from the 4D scene
and condition the video DM with the sampled fps. This
helps generating not only sufficiently long but also tempo-
rally smooth 4D animations, as different fps correspond to
long-term and short-term dynamics. Therefore, when ren-
dering short but high fps videos they only span part of the
entire length of the 4D sequence. Also see Supp. Material.

Optimizing the deformation field while supervising both
with a video and image DM is crucial. The video DM gen-
erates temporal dynamics, but text-to-video DMs are not as
robust as general text-to-image DMs. Including the image
DM during this stage ensures stable optimization and that

high visual frame quality is maintained (ablations in Sec. 4).
A crucial advantage of the disentangled two stage design

is that AYG’s main 4D synthesis method—the main inno-
vation of this work—could in the future in principle also
be applied to 3D objects originating from other generation
systems or even to synthetic assets created by digital artists.

3.3. AYG’s Score Distillation in Practice

Above, we have laid out AYG’s general synthesis frame-
work. The full stage 2 score distillation gradient including
CFG can be expressed as (stage 1 proceeds analogously)

∇ΦLAYG
SDS = Et,ϵvid,ϵim

[
w(t)

{
γ

(
ωvid

[
ϵ̂vid(Z, v, t)− ϵ̂vid(Z, t)

]
+ ϵ̂vid(Z, v, t)− ϵvid︸ ︷︷ ︸

δvid
gen

)
+ κ

(
ωim

[
ϵ̂im(Z̃, v, t)− ϵ̂im(Z̃, t)

]
+ ϵ̂im(Z̃, v, t)− ϵim︸ ︷︷ ︸

δim
gen

)}
∂{x}
∂Φ

]
, (3)

where Z := {zciτi}F , Z̃ := {z̃c̃jτ̃j}M , ωvid/im are the CFG
scales for the video and image DMs, ϵ̂vid(Z, v, t) and
ϵ̂im(Z̃, v, t) are the corresponding denoiser networks and
ϵvid and ϵim are the diffusion noises (an analogous SDS gra-
dient can be written for stage 1). Moreover, {x} denotes
the set of all renderings from the 4D scene through which
the SDS gradient is backpropagated, and which are diffused
to produce Z and Z̃. Recently, ProlificDreamer [92] pro-
posed a scheme where the control variates ϵvid/im above are
replaced by DMs that model the rendering distribution, are
initialized from the DMs guiding the synthesis (ϵ̂vid(Z, v, t)
and ϵ̂im(Z̃, v, t) here), and are then slowly fine-tuned on the
diffused renderings (Z or Z̃ here). This means that at the
beginning of optimization the terms δvid/im

gen in Eq. (3) would
be zero. Inspired by this observation and aiming to avoid
ProlificDreamer’s cumbersome fine-tuning, we instead pro-
pose to simply set δvid/im

gen = 0 entirely and optimize with

∇ΦLAYG
CSD = Et,ϵvid,ϵim

[
w(t)

{
ωvid

[
ϵ̂vid(Z, v, t)− ϵ̂vid(Z, t)︸ ︷︷ ︸

δvid
cls

]
+ ωim

[
ϵ̂im(Z̃, v, t)− ϵ̂im(Z̃, t)︸ ︷︷ ︸

δim
cls

]}∂{x}
∂Φ

]
, (4)

where we absorbed γ and κ into ωvid/im. Interestingly, this
exactly corresponds to the concurrently proposed classifier
score distillation (CSD) [102], which points out that the
above two terms δvid/im

cls in Eq. (4) correspond to implicit
classifiers predicting v from the video or images, respec-
tively. CSD then uses only δvid/im

cls for score distillation, re-
sulting in improved performance over SDS. We discovered
that scheme independently, while aiming to inherit Prolific-
Dreamer’s strong performance. Supp. Material for details.

6

Figure 8. AYG (ours) vs. MAV3D [79]. We show four 4D frames
for different times and camera angles (also see Supp. Video).

3.4. Scaling Align Your Gaussians

To scale AYG and achieve state-of-the-art text-to-4D per-
formance, we introduce several further novel techniques.

Distribution Regularization of 4D Gaussians. We de-
veloped a method to stabilize optimization and ensure real-
istic learnt motion. We calculate the means ντ and diagonal
covariances Γτ of the entire set of 3D Gaussians (using their
means µi) at times τ along the 4D sequence (Fig. 4). Defin-
ing a Normal distribution N (ντ ,Γτ) with these means and
covariances, we regularize with a modified version of the
Jensen-Shannon divergence JSD (N (ν0,Γ0)||N (ντ ,Γτ))
between the 3D Gaussians at the initial and later frames
τ (see Supp. Material). This ensures that the mean and
the diagonal covariance of the distribution of the Gaussians
stay approximately constant and encourages AYG to gen-
erate meaningful and complex dynamics instead of simple
global translations and object size changes.

Extended Autoregressive Generation. By default,
AYG produces relatively short 4D sequences, which is due
to the guiding text-to-video model, which itself only gen-
erates short video clips (see Blattmann et al. [7]). To over-
come this limitation, we developed a method to autoregres-
sively extend the 4D sequences. We use the middle 4D
frame from a first sequence as the initial frame of a second
sequence, optimizing a second deformation field, optionally
using a different text prompt. As the second sequence is ini-
tialized from the middle frame of the first sequence, there is
an overlap interval with length 0.5 of the total length of each
sequence. When optimizing for the second deformation
field, we smoothly interpolate between the first and second

Table 1. Comparison to MAV3D [79] by user study on synthe-
sized 4D scenes with 28 text prompts. Numbers are percentages.

Method AYG (ours) MAV3D [79] Equal
preference preferred preferred preference

Overall Quality 53.6 38.8 7.6
3D Appearance 47.4 37.2 15.4
3D Text Alignment 45.9 38.8 15.3
Motion Amount 45.9 38.8 15.3
Motion Text Alignment 47.4 33.7 18.9
Motion Realism 44.4 43.9 11.7

deformation fields for the overlap region (Fig. 5). Specif-
ically, we define ∆interpol

Φ12
= (1 − χ(τ))∆Φ1

+ χ(τ)∆Φ2

where χ is a linear function with χ(τ0.5) = 0 and χ(τ1.0) =
1, τ0.5 and τ1.0 represent the middle and last time frames of
the first sequence, ∆interpol

Φ12
is the interpolated deformation

field, and ∆Φ1 (kept fixed) and ∆Φ2 are the deformation
fields of the first and second sequence, respectively. We
additionally minimize LInterpol-Reg. = ||∆Φ1

− ∆interpol
Φ12

||22
within the overlap region to regularize the optimization pro-
cess of ∆Φ2 . For the non-overlap regions, we just use the
corresponding ∆Φ. With this careful interpolation tech-
nique the deformation field smoothly transitions from the
first sequence’s into the second sequence’s. Without it, we
obtained abrupt, unrealistic transitions.

Motion Amplification. When a set of 4D scene ren-
derings is given to the text-to-video model, it produces a
(classifier) score distillation gradient for each frame i. We
expect most motion when the gradient for each frame points
into a different direction. With that in mind, we propose a
motion amplification technique. We post-process the video
model’s individual frame scores δvid

cls i (i ∈ {1, ..., F}) as
δvid

cls i →
〈
δvid

cls i

〉
+ ωma

(
δvid

cls i −
〈
δvid

cls i

〉)
, where

〈
δvid

cls i

〉
is

the average score over the F video frames and ωma is the
motion amplifier scale. This scheme is inspired by CFG
and reproduces regular video model scores for ωma=1. For
larger ωma, the difference between the individual frames’
scores and the average is amplified, thereby encouraging
larger frame differences and more motion.

View Guidance. In AYG’s 3D stage, for the text-to-
image model we use a new view guidance. We construct
an additional implicit classifier term ωvg

[
ϵ̂im(z, vaug, t) −

ϵ̂im(z, v, t)
]
, where vaug denotes the original text prompt v

augmented with directional texts such as “front view” (see
Sec. 3.2) and ωvg is the guidance scale. View guidance am-
plifies the effect of directional text prompt augmentation.

Negative Prompting. We also use negative prompt
guidance during both the 3D and 4D stages. During the
4D stage, we use “low motion, static statue, not moving, no
motion” to encourage AYG to generate more dynamic and
vivid 4D scenes. Supp. Material for 3D stage and details.

4. Experiments
Text-to-4D. In Fig. 6, we show text-to-4D sequences gen-
erated by AYG (hyperparameters and details in Supp. Ma-

7

Align Your Gaussians Overall 3D 3D Text Motion Motion Text Motion
(full model) Quality Appearance Alignment Amount Alignment Realism

v.s. w/o rigidity regularization 45.8/13.3 43.3/19.2 38.3/15.0 40.8/15.0 42.5/18.3 30.8/26.7
v.s. w/o motion amplifier 43.3/23.3 37.5/28.3 30.8/26.7 45.8/10.8 37.5/26.7 33.3/31.7
v.s. w/o initial 3D stage 67.5/15.0 57.5/21.7 64.2/15.0 60.8/21.7 60.8/20.8 59.2/24.2
v.s. w/o JSD-based regularization 40.0/25.0 40.0/27.5 36.7/27.5 41.7/24.2 39.2/29.2 45.0/24.2
v.s. w/o image DM score in 4D stage 42.5/22.5 39.2/27.5 36.7/25.8 33.3/25.9 37.5/30.0 27.5/40.0
v.s. SDS instead of CSD 44.2/35.8 40.0/27.5 35.8/35.0 35.0/27.5 35.0/34.2 32.5/35.8
v.s. 3D stage w/o MVDream 66.7/21.7 48.3/34.2 38.3/34.2 41.7/22.5 40.0/27.5 40.8/27.5
v.s. 4D stage with MVDream 50.8/27.5 38.3/34.2 41.6/29.2 39.2/35.0 44.2/30.0 39.2/31.7
v.s. video model with only fps 4 46.7/15.8 27.5/36.7 30.0/23.3 36.7/30.0 31.7/26.7 32.5/28.3
v.s. video model with only fps 12 48.3/29.2 30.8/29.2 29.2/28.3 35.0/28.3 35.0/30.0 39.2/26.7
v.s. w/o dynamic cameras 32.5/25.0 32.5/31.7 35.0/33.3 35.0/32.5 35.8/33.3 32.5/25.0
v.s. w/o negative prompting 44.2/28.3 38.3/32.5 31.7/29.2 29.2/31.6 33.3/30.0 37.5/28.3

Table 2. Ablation study by user
study on synthesized 4D scenes
with 30 text prompts. For each pair
of numbers, the left number is the
percentage that the full AYG model
is preferred and the right number
indicates preference percentage for
ablated model as described in left
column. The numbers do not add
up to 100 and the difference is due
to users voting “no preference” (de-
tails in Supp. Material).

terial). AYG can generate realistic, expressive, detailed and
vivid dynamic 4D scenes (4D scenes can be rendered at
varying speeds and frame rates). Importantly, our method
demonstrates zero-shot generalization capabilities to cre-
ative text prompts corresponding to scenes that are unlikely
to be found in the diffusion models’ training images and
videos. More results in Supp. Material and on project page.

To compare AYG to MAV3D [79], we performed a com-
prehensive user study where we took the 28 rendered videos
from MAV3D’s project page2 and compared them to corre-
sponding generations from AYG with the same text prompts
(Table 1). We asked the users to rate overall quality, 3D
appearance and text alignment, as well as motion amount,
motion text alignment and motion realism (user study de-
tails in Supp. Material). AYG outperforms MAV3D on all
metrics, achieving state-of-the-art text-to-4D performance
(we also evaluated R-Precision [32, 58] on a larger prompt
set used by MAV3D [78, 79], performing on par, see Supp.
Mat.; however, R-Precision is a meaningless metric to eval-
uate dynamic scenes). Qualitative comparisons are shown
in Fig. 8 (more in Supp. Mat.). We see that AYG produces
more detailed 4D outputs. Note that MAV3D uses an extra
background model, while AYG does not. Adding a similar
background model would be easy but is left to future work.

Ablation Studies. Next, we performed an ablation study
on AYG’s different components. We used a set of 30 text
prompts and generated 4D scenes for versions of AYG with
missing or modified components, see Table 2. Using the
same categories as before, we asked users to rate preference
of our full method vs. the ablated AYG variants. Some com-
ponents have different effects with respect to 3D appearance
and motion, but we generally see that all components matter
significantly in terms of overall quality, i.e., for all ablations
our full method is strongly preferred over the ablated AYG
versions. This justifies AYG’s design. A thorough discus-
sion is presented in the Supp. Material, but we highlight
some relevant observations. We see that our novel JSD-
based regularization makes a major difference, and we also
observe that the motion amplifier indeed has a strong effect
for “Motion Amount”. Moreover, our compositional ap-
proach is crucial. Running the 4D stage without image DM

2https://make-a-video3d.github.io/

feedback produces much worse 3D and overall quality. Also
the decomposition into two stages is important—carrying
out 4D synthesis without initial 3D stage performs poorly.

Temporally Extended 4D Synthesis and Large Scene
Composition. In Fig. 7, we show autoregressively ex-
tended text-to-4D results with changing text prompts (also
see Supp. Video). AYG can realistically connect differ-
ent 4D sequences and generate expressive animations with
changing dynamics and behavior. We can also create se-
quences that loop endlessly by enforcing that the last frame
of a later sequence matches the first frame of an earlier one
and suppressing the deformation field there (similar to how
we enforce zero deformation at τ=0 in Sec. 3.1). Finally,
due to the explicit nature of the dynamic 3D Gaussians,
AYG’s 4D representation, multiple animated 4D objects can
be easily composed into larger scenes, each shape with its
own deformation field defining its dynamics. We show this
in Fig. 1, where each dynamic object in the large scene is
generated, except for the ground plane. These capabilities,
not shown by previous work [79], are particularly promising
for practical content creation applications.

5. Conclusions
We presented Align Your Gaussians for expressive text-to-
4D synthesis. AYG builds on dynamic 3D Gaussian Splat-
ting with deformation fields as well as score distillation with
multiple composed diffusion models. Novel regularization
and guidance techniques allow us to achieve state-of-the-art
dynamic scene generation and we also show temporally ex-
tended 4D synthesis as well as the composition of multiple
dynamic objects within a larger scene. AYG has many po-
tential applications for creative content creation and it could
also be used in the context of synthetic data generation. For
example, AYG would enable synthesis of videos and 4D se-
quences with exact tracking labels, useful for training dis-
criminative models. AYG currently cannot easily produce
topological changes of the dynamic objects. Overcoming
this limitation would be an exciting avenue for future work.
Other directions include scaling AYG beyond object-centric
generation and personalized 4D synthesis. The initial 3D
object could be generated from a personalized diffusion
model (e.g. DreamBooth3D [66, 71]) or with image-to-3D
methods [29, 42, 44, 45, 64] and then animated with AYG.

8

https://make-a-video3d.github.io/

References
[1] Jie An, Songyang Zhang, Harry Yang, Sonal Gupta, Jia-

Bin Huang, Jiebo Luo, and Xi Yin. Latent-Shift: Latent
Diffusion with Temporal Shift for Efficient Text-to-Video
Generation. arXiv preprint arXiv:2304.08477, 2023. 2, 3,
15

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.
Layer Normalization. arXiv preprint arXiv:1607.06450,
2016. 17

[3] Sherwin Bahmani, Ivan Skorokhodov, Victor Rong, Gor-
don Wetzstein, Leonidas Guibas, Peter Wonka, Sergey
Tulyakov, Jeong Joon Park, Andrea Tagliasacchi, and
David B. Lindell. 4D-fy: Text-to-4D Generation Us-
ing Hybrid Score Distillation Sampling. arXiv preprint
arXiv:2311.17984, 2023. 16

[4] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisser-
man. Frozen in Time: A Joint Video and Image Encoder for
End-to-End Retrieval. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), 2021.
4, 24

[5] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,
Jiaming Song, Qinsheng Zhang, Karsten Kreis, Miika Ait-
tala, Timo Aila, Samuli Laine, Bryan Catanzaro, Tero Kar-
ras, and Ming-Yu Liu. eDiff-I: Text-to-Image Diffusion
Models with Ensemble of Expert Denoisers. arXiv preprint
arXiv:2211.01324, 2022. 3, 15

[6] Miguel Ángel Bautista, Pengsheng Guo, Samira Abnar,
Walter Talbott, Alexander T Toshev, Zhuoyuan Chen, Lau-
rent Dinh, Shuangfei Zhai, Hanlin Goh, Daniel Ulbricht,
Afshin Dehghan, and Joshua M. Susskind. GAUDI: A
Neural Architect for Immersive 3D Scene Generation.
In Advances in Neural Information Processing Systems
(NeurIPS), 2022. 15

[7] Andreas Blattmann, Robin Rombach, Huan Ling, Tim
Dockhorn, Seung Wook Kim, Sanja Fidler, and Karsten
Kreis. Align your Latents: High-Resolution Video Syn-
thesis with Latent Diffusion Models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023. 2, 3, 4, 7, 15, 19, 24, 25

[8] Hongrui Cai, Wanquan Feng, Xuetao Feng, Yan Wang,
and Juyong Zhang. Neural Surface Reconstruction of Dy-
namic Scenes with Monocular RGB-D Camera. In Thirty-
sixth Conference on Neural Information Processing Sys-
tems (NeurIPS), 2022. 3, 16

[9] Ang Cao and Justin Johnson. HexPlane: A Fast Representa-
tion for Dynamic Scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2023. 3, 15

[10] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fanta-
sia3D: Disentangling Geometry and Appearance for High-
quality Text-to-3D Content Creation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), 2023. 2, 3, 15

[11] Yiwen Chen, Chi Zhang, Xiaofeng Yang, Zhongang Cai,
Gang Yu, Lei Yang, and Guosheng Lin. IT3D: Improved
Text-to-3D Generation with Explicit View Synthesis. arXiv
preprint arXiv:2308.11473, 2023. 2, 3, 15

[12] Zilong Chen, Feng Wang, and Huaping Liu. Text-to-3D us-
ing Gaussian Splatting. arXiv preprint arXiv:2309.16585,
2023. 3, 16

[13] Jaeyoung Chung, Suyoung Lee, Hyeongjin Nam, Jaerin
Lee, and Kyoung Mu Lee. LucidDreamer: Domain-
free Generation of 3D Gaussian Splatting Scenes. arXiv
preprint arXiv:2311.13384, 2023. 16

[14] Xiaoliang Dai, Ji Hou, Chih-Yao Ma, Sam Tsai, Jialiang
Wang, Rui Wang, Peizhao Zhang, Simon Vandenhende, Xi-
aofang Wang, Abhimanyu Dubey, Matthew Yu, Abhishek
Kadian, Filip Radenovic, Dhruv Mahajan, Kunpeng Li, Yue
Zhao, Vladan Petrovic, Mitesh Kumar Singh, Simran Mot-
wani, Yi Wen, Yiwen Song, Roshan Sumbaly, Vignesh Ra-
manathan, Zijian He, Peter Vajda, and Devi Parikh. Emu:
Enhancing Image Generation Models Using Photogenic
Needles in a Haystack. arXiv preprint arXiv:2309.15807,
2023. 3, 15

[15] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong
Ngo, Oscar Michel, Aditya Kusupati, Alan Fan, Chris-
tian Laforte, Vikram Voleti, Samir Yitzhak Gadre, Eli
VanderBilt, Aniruddha Kembhavi, Carl Vondrick, Georgia
Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi.
Objaverse-XL: A Universe of 10M+ 3D Objects. arXiv
preprint arXiv:2307.05663, 2023. 4

[16] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,
Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana
Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse:
A Universe of Annotated 3D Objects. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023. 4

[17] C. Deng, C. Jiang, C. R. Qi, X. Yan, Y. Zhou, L. Guibas,
and D. Anguelov. NeRDi: Single-View NeRF Synthesis
with Language-Guided Diffusion as General Image Priors.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2023. 3, 15

[18] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion
Models Beat GANs on Image Synthesis. In Advances in
Neural Information Processing Systems, 2021. 3, 15

[19] Yilun Du, Conor Durkan, Robin Strudel, Joshua B.
Tenenbaum, Sander Dieleman, Rob Fergus, Jascha Sohl-
Dickstein, Arnaud Doucet, and Will Grathwohl. Reduce,
Reuse, Recycle: Compositional Generation with Energy-
Based Diffusion Models and MCMC. In Proceedings of the
40th International Conference on Machine Learning, 2023.
3, 16, 20

[20] Lincong Feng, Muyu Wang, Maoyu Wang, Kuo Xu, and
Xiaoli Liu. MetaDreamer: Efficient Text-to-3D Creation
With Disentangling Geometry and Texture. arXiv preprint
arXiv:2311.10123, 2023. 15

[21] Zhida Feng, Zhenyu Zhang, Xintong Yu, Yewei Fang,
Lanxin Li, Xuyi Chen, Yuxiang Lu, Jiaxiang Liu, We-
ichong Yin, Shikun Feng, Yu Sun, Li Chen, Hao Tian,
Hua Wu, and Haifeng Wang. ERNIE-ViLG 2.0: Im-
proving Text-to-Image Diffusion Model With Knowledge-
Enhanced Mixture-of-Denoising-Experts. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2023. 3, 15

9

[22] Songwei Ge, Seungjun Nah, Guilin Liu, Tyler Poon, An-
drew Tao, Bryan Catanzaro, David Jacobs, Jia-Bin Huang,
Ming-Yu Liu, and Yogesh Balaji. Preserve Your Own Cor-
relation: A Noise Prior for Video Diffusion Models. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2023. 2, 3, 15

[23] Rohit Girdhar, Mannat Singh, Andrew Brown, Quentin Du-
val, Samaneh Azadi, Sai Saketh Rambhatla, Akbar Shah,
Xi Yin, Devi Parikh, and Ishan Misra. Emu Video: Fac-
torizing Text-to-Video Generation by Explicit Image Con-
ditioning. arXiv preprint arXiv:2311.10709, 2023. 15

[24] Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Josh Susskind,
and Navdeep Jaitly. Matryoshka Diffusion Models. arXiv
preprint arXiv:2310.15111, 2023. 15

[25] Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu
Qiao, Dahua Lin, and Bo Dai. AnimateDiff: Animate Your
Personalized Text-to-Image Diffusion Models without Spe-
cific Tuning. arXiv preprint arXiv:2307.04725, 2023. 3,
15

[26] Jonathan Ho and Tim Salimans. Classifier-Free Diffusion
Guidance. In NeurIPS 2021 Workshop on Deep Generative
Models and Downstream Applications, 2021. 3, 23

[27] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Dif-
fusion Probabilistic Models. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2020. 3, 15, 21, 22

[28] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey Gritsenko, Diederik P. Kingma, Ben
Poole, Mohammad Norouzi, David J. Fleet, and Tim Sal-
imans. Imagen Video: High Definition Video Generation
with Diffusion Models. arXiv preprint arXiv:2210.02303,
2022. 2, 3, 15

[29] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou,
Difan Liu, Feng Liu, Kalyan Sunkavalli, Trung Bui, and
Hao Tan. LRM: Large Reconstruction Model for Single
Image to 3D. arXiv preprint arXiv:2311.04400, 2023. 8

[30] Emiel Hoogeboom, Jonathan Heek, and Tim Salimans.
Simple Diffusion: End-to-End Diffusion for High Resolu-
tion Images. In Proceedings of the 40th International Con-
ference on Machine Learning (ICML), 2023. 15

[31] Yukun Huang, Jianan Wang, Yukai Shi, Xianbiao Qi,
Zheng-Jun Zha, and Lei Zhang. DreamTime: An Im-
proved Optimization Strategy for Text-to-3D Content Cre-
ation. arXiv preprint arXiv:2306.12422, 2023. 2, 3, 15

[32] A. Jain, B. Mildenhall, J. T. Barron, P. Abbeel, and B.
Poole. Zero-Shot Text-Guided Object Generation with
Dream Fields. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2022. 8, 28

[33] Yanqin Jiang, Li Zhang, Jin Gao, Weimin Hu, and
Yao Yao. Consistent4D: Consistent 360◦ Dynamic Ob-
ject Generation from Monocular Video. arXiv preprint
arxiv:2311.02848, 2023. 16

[34] Nikolai Kalischek, Torben Peters, Jan D. Wegner, and Kon-
rad Schindler. Tetrahedral Diffusion Models for 3D Shape
Generation. arXiv preprint arXiv:2211.13220, 2022. 15

[35] Oren Katzir, Or Patashnik, Daniel Cohen-Or, and Dani
Lischinski. Noise-Free Score Distillation. arXiv preprint
arXiv:2310.17590, 2023. 15

[36] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3D Gaussian Splatting for Real-Time
Radiance Field Rendering. ACM Transactions on Graphics,
42(4), 2023. 2, 3, 4, 16, 17

[37] Isaac Kerlow. The Art of 3D Computer Animation and Ef-
fects. Wiley Publishing, 4th edition, 2009. 16

[38] Levon Khachatryan, Andranik Movsisyan, Vahram Tade-
vosyan, Roberto Henschel, Zhangyang Wang, Shant
Navasardyan, and Humphrey Shi. Text2Video-Zero: Text-
to-Image Diffusion Models are Zero-Shot Video Genera-
tors. arXiv preprint arXiv:2303.13439, 2023. 3, 15, 25

[39] Seung Wook Kim, Bradley Brown, Kangxue Yin, Karsten
Kreis, Katja Schwarz, Daiqing Li, Robin Rombach, Anto-
nio Torralba, and Sanja Fidler. NeuralField-LDM: Scene
Generation with Hierarchical Latent Diffusion Models. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2023. 15

[40] Yixun Liang, Xin Yang, Jiantao Lin, Haodong Li, Xiaogang
Xu, and Yingcong Chen. LucidDreamer: Towards High-
Fidelity Text-to-3D Generation via Interval Score Match-
ing. arXiv preprint arXiv:2311.11284, 2023. 15, 16

[41] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki
Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja
Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3D: High-
Resolution Text-to-3D Content Creation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023. 2, 3, 15

[42] Minghua Liu, Ruoxi Shi, Linghao Chen, Zhuoyang Zhang,
Chao Xu, Xinyue Wei, Hansheng Chen, Chong Zeng, Ji-
ayuan Gu, and Hao Su. One-2-3-45++: Fast Single Image
to 3D Objects with Consistent Multi-View Generation and
3D Diffusion. arXiv preprint arXiv:2311.07885, 2023. 3,
8, 15

[43] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and
Joshua B. Tenenbaum. Compositional Visual Generation
with Composable Diffusion Models. In Computer Vision –
ECCV 2022, 2022. 3, 16, 20

[44] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:
Zero-shot One Image to 3D Object. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), 2023. 3, 8, 15

[45] Yuan Liu, Cheng Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie
Liu, Taku Komura, and Wenping Wang. SyncDreamer:
Generating Multiview-consistent Images from a Single-
view Image. arXiv preprint arXiv:2309.03453, 2023. 3,
8, 15

[46] Zhen Liu, Yao Feng, Michael J. Black, Derek
Nowrouzezahrai, Liam Paull, and Weiyang Liu. MeshD-
iffusion: Score-based Generative 3D Mesh Modeling. In
International Conference on Learning Representations
(ICLR), 2023. 15

[47] Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu,
Zhiyang Dou, Lingjie Liu, Yuexin Ma, Song-Hai Zhang,
Marc Habermann, Christian Theobalt, and Wenping Wang.
Wonder3D: Single Image to 3D using Cross-Domain Dif-
fusion. arXiv preprint arXiv:2310.15008, 2023. 15

10

[48] Jonathan Lorraine, Kevin Xie, Xiaohui Zeng, Chen-Hsuan
Lin, Towaki Takikawa, Nicholas Sharp, Tsung-Yi Lin,
Ming-Yu Liu, Sanja Fidler, and James Lucas. ATT3D:
Amortized Text-to-3D Object Synthesis. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), 2023. 3, 15

[49] Bruce D Lucas and Takeo Kanade. An iterative image reg-
istration technique with an application to stereo vision. In
IJCAI’81: 7th international joint conference on Artificial
intelligence, 1981. 24

[50] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3D Gaussians: Tracking
by Persistent Dynamic View Synthesis. arXiv preprint
arXiv:2308.09713, 2023. 3, 4, 16, 17

[51] Shitong Luo and Wei Hu. Diffusion Probabilistic Mod-
els for 3D Point Cloud Generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021. 15

[52] G. Metzer, E. Richardson, O. Patashnik, R. Giryes, and D.
Cohen-Or. Latent-NeRF for Shape-Guided Generation of
3D Shapes and Textures. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2023. 2, 3, 15

[53] Marko Mihajlovic, Sergey Prokudin, Marc Pollefeys, and
Siyu Tang. ResFields: Residual Neural Fields for Spa-
tiotemporal Signals. arXiv preprint arXiv:2309.03160,
2023. 16

[54] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng.
NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis. In ECCV, 2020. 3, 15

[55] Vinod Nair and Geoffrey E Hinton. Rectified Linear Units
Improve Restricted Boltzmann Machines. In Proceedings
of the 27th international conference on machine learning
(ICML-10), pages 807–814, 2010. 17

[56] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela
Mishkin, and Mark Chen. Point-E: A System for Gen-
erating 3D Point Clouds from Complex Prompts. arXiv
preprint arXiv:2212.08751, 2022. 3, 15

[57] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
Denoising Diffusion Probabilistic Models. In Proceedings
of the 38th International Conference on Machine Learning
(ICML), 2021. 3, 15

[58] Dong Huk Park, Samaneh Azadi, Xihui Liu, Trevor Darrell,
and Anna Rohrbach. Benchmark for Compositional Text-
to-Image Synthesis. In NeurIPS Datasets and Benchmarks,
2021. 8, 28

[59] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable Neural Radiance
Fields. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), 2021. 2, 3, 4, 16

[60] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T.
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M. Seitz. HyperNeRF: A Higher-
Dimensional Representation for Topologically Varying
Neural Radiance Fields. ACM Trans. Graph., 40(6), 2021.
3, 16

[61] Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. SDXL: Improving Latent Diffusion Mod-
els for High-Resolution Image Synthesis. arXiv preprint
arXiv:2307.01952, 2023. 3, 15

[62] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-
hall. DreamFusion: Text-to-3D using 2D Diffusion. In The
Eleventh International Conference on Learning Represen-
tations (ICLR), 2023. 2, 3, 5, 15, 16, 21, 22

[63] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-NeRF: Neural Radiance
Fields for Dynamic Scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 2, 3, 4, 16

[64] Guocheng Qian, Jinjie Mai, Abdullah Hamdi, Jian Ren,
Aliaksandr Siarohin, Bing Li, Hsin-Ying Lee, Ivan Sko-
rokhodov, Peter Wonka, Sergey Tulyakov, and Bernard
Ghanem. Magic123: One Image to High-Quality 3D Object
Generation Using Both 2D and 3D Diffusion Priors. arXiv
preprint arXiv:2306.17843, 2023. 3, 8, 15

[65] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning Transferable Vi-
sual Models From Natural Language Supervision. In Pro-
ceedings of the 38th International Conference on Machine
Learning (ICML), 2021. 28

[66] Amit Raj, Srinivas Kaza, Ben Poole, Michael Niemeyer,
Ben Mildenhall, Nataniel Ruiz, Shiran Zada, Kfir Aber-
man, Michael Rubenstein, Jonathan Barron, Yuanzhen Li,
and Varun Jampani. DreamBooth3D: Subject-Driven Text-
to-3D Generation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), 2023. 8

[67] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. Hierarchical Text-Conditional
Image Generation with CLIP Latents. arXiv preprint
arXiv:2204.06125, 2022. 3, 15

[68] Davis Rempe, Zhengyi Luo, Xue Bin Peng, Ye Yuan, Kris
Kitani, Karsten Kreis, Sanja Fidler, and Or Litany. Trace
and Pace: Controllable Pedestrian Animation via Guided
Trajectory Diffusion. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2023. 16

[69] Geoffrey Roeder, Yuhuai Wu, and David Duvenaud. Stick-
ing the Landing: Simple, Lower-Variance Gradient Estima-
tors for Variational Inference. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017. 22

[70] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-Resolution Image
Synthesis with Latent Diffusion Models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 2, 3, 4, 15, 19, 20, 24, 29

[71] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023. 8

[72] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed

11

Ghasemipour, Raphael Gontijo-Lopes, Burcu Karagol
Ayan, Tim Salimans, Jonathan Ho, David J. Fleet, and Mo-
hammad Norouzi. Photorealistic Text-to-Image Diffusion
Models with Deep Language Understanding. In Advances
in Neural Information Processing Systems (NeurIPS),
2022. 3, 15

[73] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, et al. LAION-5B: An open large-scale dataset for
training next generation image-text models. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.
24

[74] Katja Schwarz, Seung Wook Kim, Jun Gao, Sanja Fidler,
Andreas Geiger, and Karsten Kreis. WildFusion: Learning
3D-Aware Latent Diffusion Models in View Space. arXiv
preprint arXiv:2311.13570, 2023. 15

[75] Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua
Liu, Chao Xu, Xinyue Wei, Linghao Chen, Chong Zeng,
and Hao Su. Zero123++: a Single Image to Consis-
tent Multi-view Diffusion Base Model. arXiv preprint
arXiv:2310.15110, 2023. 3, 15

[76] Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li,
and Xiao Yang. MVDream: Multi-view Diffusion for 3D
Generation. arXiv preprint arXiv:2308.16512, 2023. 2, 3,
4, 15, 19, 20, 24, 25, 29

[77] J. Shue, E. Chan, R. Po, Z. Ankner, J. Wu, and G. Wetzstein.
3D Neural Field Generation Using Triplane Diffusion. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2023. 15

[78] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An,
Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual,
Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taig-
man. Make-A-Video: Text-to-Video Generation without
Text-Video Data. In The Eleventh International Conference
on Learning Representations (ICLR), 2023. 2, 3, 8, 15, 16,
24, 27, 28

[79] Uriel Singer, Shelly Sheynin, Adam Polyak, Oron Ashual,
Iurii Makarov, Filippos Kokkinos, Naman Goyal, Andrea
Vedaldi, Devi Parikh, Justin Johnson, and Yaniv Taigman.
Text-to-4D Dynamic Scene Generation. In Proceedings of
the 40th International Conference on Machine Learning,
2023. 2, 3, 4, 6, 7, 8, 15, 17, 20, 24, 26, 27, 30, 31, 36

[80] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep Unsupervised Learning using
Nonequilibrium Thermodynamics. In International Con-
ference on Machine Learning (ICML), 2015. 3, 15

[81] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
Based Generative Modeling through Stochastic Differential
Equations. In International Conference on Learning Rep-
resentations (ICLR), 2021. 3, 15, 21, 22

[82] Jingxiang Sun, Bo Zhang, Ruizhi Shao, Lizhen Wang, Wen
Liu, Zhenda Xie, and Yebin Liu. DreamCraft3D: Hierarchi-
cal 3D Generation with Bootstrapped Diffusion Prior. arXiv
preprint arXiv:2310.16818, 2023. 15

[83] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and
Gang Zeng. DreamGaussian: Generative Gaussian Splat-

ting for Efficient 3D Content Creation. arXiv preprint
arXiv:2309.16653, 2023. 3, 16, 25

[84] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik,
Michael Zollhöfer, Christoph Lassner, and Christian
Theobalt. Non-Rigid Neural Radiance Fields: Reconstruc-
tion and Novel View Synthesis of a Dynamic Scene From
Monocular Video. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), 2021. 3,
16

[85] Christina Tsalicoglou, Fabian Manhardt, Alessio Tonioni,
Michael Niemeyer, and Federico Tombari. TextMesh: Gen-
eration of Realistic 3D Meshes From Text Prompts. In In-
ternational conference on 3D vision (3DV), 2024. 2, 3, 15

[86] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based
Generative Modeling in Latent Space. In Neural Informa-
tion Processing Systems (NeurIPS), 2021. 4, 15, 22, 24

[87] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention Is All You Need. Advances
in neural information processing systems, 30, 2017. 17

[88] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A. Yeh,
and Greg Shakhnarovich. Score Jacobian Chaining: Lifting
Pretrained 2D Diffusion Models for 3D Generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2023. 2, 3, 15

[89] Tengfei Wang, Bo Zhang, Ting Zhang, Shuyang Gu, Jian-
min Bao, Tadas Baltrusaitis, Jingjing Shen, Dong Chen,
Fang Wen, Qifeng Chen, and Baining Guo. RODIN: A
Generative Model for Sculpting 3D Digital Avatars Using
Diffusion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.
15

[90] Wenjing Wang, Huan Yang, Zixi Tuo, Huiguo He, Junchen
Zhu, Jianlong Fu, and Jiaying Liu. VideoFactory: Swap
Attention in Spatiotemporal Diffusions for Text-to-Video
Generation. arXiv preprint arXiv:2305.10874, 2023. 2, 3,
4, 15, 24

[91] Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou,
Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan He, Jiashuo
Yu, Peiqing Yang, Yuwei Guo, Tianxing Wu, Chenyang Si,
Yuming Jiang, Cunjian Chen, Chen Change Loy, Bo Dai,
Dahua Lin, Yu Qiao, and Ziwei Liu. LAVIE: High-Quality
Video Generation with Cascaded Latent Diffusion Models.
arXiv preprint arXiv:2309.15103, 2023. 2, 3, 15

[92] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongx-
uan Li, Hang Su, and Jun Zhu. ProlificDreamer: High-
Fidelity and Diverse Text-to-3D Generation with Varia-
tional Score Distillation. In Thirty-seventh Conference on
Neural Information Processing Systems (NeurIPS), 2023.
2, 3, 6, 15, 23

[93] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xi-
aopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xing-
gang Wang. 4D Gaussian Splatting for Real-Time Dynamic
Scene Rendering. arXiv preprint arXiv:2310.08528, 2023.
3, 16

[94] Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian
Lei, Yuchao Gu, Yufei Shi, Wynne Hsu, Ying Shan, Xiaohu

12

Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning
of image diffusion models for text-to-video generation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2023. 3, 15, 25

[95] Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao
Feng, Yin Yang, and Chenfanfu Jiang. PhysGaussian:
Physics-Integrated 3D Gaussians for Generative Dynamics.
arXiv preprint arXiv:2311.12198, 2023. 16

[96] Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Yi Wang,
and Zhangyang Wang. NeuralLift-360: Lifting An In-the-
wild 2D Photo to A 3D Object with 360° Views. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2023. 3, 15

[97] Yinghao Xu, Hao Tan, Fujun Luan, Sai Bi, Peng Wang, Ji-
ahao Li, Zifan Shi, Kalyan Sunkavalli, Gordon Wetzstein,
Zexiang Xu, and Kai Zhang. DMV3D: Denoising Multi-
View Diffusion using 3D Large Reconstruction Model.
arXiv preprint arXiv:2311.09217, 2023. 15

[98] Zeyue Xue, Guanglu Song, Qiushan Guo, Boxiao Liu,
Zhuofan Zong, Yu Liu, and Ping Luo. RAPHAEL: Text-
to-Image Generation via Large Mixture of Diffusion Paths.
arXiv preprint arXiv:2305.18295, 2023. 3, 15

[99] Gengshan Yang, Minh Vo, Natalia Neverova, Deva Ra-
manan, Andrea Vedaldi, and Hanbyul Joo. BANMo: Build-
ing Animatable 3D Neural Models from Many Casual
Videos. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.
16

[100] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing
Zhang, and Xiaogang Jin. Deformable 3D Gaussians for
High-Fidelity Monocular Dynamic Scene Reconstruction.
arXiv preprint arXiv:2309.13101, 2023. 16

[101] Taoran Yi, Jiemin Fang, Guanjun Wu, Lingxi Xie, Xi-
aopeng Zhang, Wenyu Liu, Qi Tian, and Xinggang Wang.
GaussianDreamer: Fast Generation from Text to 3D Gaus-
sian Splatting with Point Cloud Priors. arXiv preprint
arxiv:2310.08529, 2023. 3, 16

[102] Xin Yu, Yuan-Chen Guo, Yangguang Li, Ding Liang, Song-
Hai Zhang, and Xiaojuan Qi. Text-to-3D with Classifier
Score Distillation. arXiv preprint arXiv:2310.19415, 2023.
2, 4, 6, 16, 23, 24

[103] Ye Yuan, Jiaming Song, Umar Iqbal, Arash Vahdat, and Jan
Kautz. PhysDiff: Physics-Guided Human Motion Diffu-
sion Model. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2023. 16

[104] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Go-
jcic, Or Litany, Sanja Fidler, and Karsten Kreis. LION:
Latent Point Diffusion Models for 3D Shape Generation.
In Advances in Neural Information Processing Systems
(NeurIPS), 2022. 3, 15

[105] Yuyang Zhao, Zhiwen Yan, Enze Xie, Lanqing Hong,
Zhenguo Li, and Gim Hee Lee. Animate124: Animat-
ing One Image to 4D Dynamic Scene. arXiv preprint
arXiv:2311.14603, 2023. 16

[106] Yufeng Zheng, Xueting Li, Koki Nagano, Sifei Liu, Karsten
Kreis, Otmar Hilliges, and Shalini De Mello. A Unified Ap-
proach for Text- and Image-guided 4D Scene Generation.
arXiv preprint arXiv:2311.16854, 2023. 16

[107] Daquan Zhou, Weimin Wang, Hanshu Yan, Weiwei Lv,
Yizhe Zhu, and Jiashi Feng. MagicVideo: Efficient Video
Generation With Latent Diffusion Models. arXiv preprint
arXiv:2211.11018, 2023. 2, 3, 15

[108] Linqi Zhou, Yilun Du, and Jiajun Wu. 3D Shape Gener-
ation and Completion Through Point-Voxel Diffusion. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 15

[109] Junzhe Zhu and Peiye Zhuang. HiFA: High-fidelity Text-
to-3D with Advanced Diffusion Guidance. arXiv preprint
arXiv:2305.18766, 2023. 2, 3, 15

[110] Wojciech Zielonka, Timur Bagautdinov, Shunsuke
Saito, Michael Zollhöfer, Justus Thies, and Javier
Romero. Drivable 3D Gaussian Avatars. arXiv preprint
arxiv:2311.08581, 2023. 3, 16

[111] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. EWA
volume splatting. In Proceedings Visualization, 2001. VIS
’01., 2001. 3

13

Contents
1. Introduction 1

2. Background 3
2.1. Related Work . 3

3. Align Your Gaussians 4
3.1. AYG’s 4D Representation . 4
3.2. Text-to-4D as Compositional Generation . 4
3.3. AYG’s Score Distillation in Practice . 6
3.4. Scaling Align Your Gaussians . 7

4. Experiments 7

5. Conclusions 8

References 8

A. Supplementary Videos 15

B. Related Work—Extended Version 15

C. Details of Align Your Gaussians’ 4D Representation and Optimization 16
C.1. 3D Representation . 16
C.2. Deformation Field . 17
C.3. Frames-Per-Second (fps) Sampling . 17
C.4. Rigidity Regularization . 17
C.5. JSD-based Regularization of the Evolving Distribution of the Dynamic 3D Gaussians 17
C.6. Camera Distribution . 19
C.7. Diffusion Models . 19
C.8. Rendering Resolution . 19
C.9. Additional Fine-tuning and Optimization . 19

D. Align Your Gaussian’s Synthesis Framework 20
D.1. AYG’s Compositional Generation Framework . 20
D.2. AYG’s Score Distillation Scheme . 21
D.3. AYG’s Parameter Gradients—Putting it All Together . 23

E. Experiment Details 24
E.1. Video Diffusion Model Training . 24
E.2. Text-to-4D Hyperparameters . 25
E.3. Evaluation Prompts . 26
E.4. User Study Details . 27

F. Additional Quantitative Results 27
F.1. Comparisons to MAV3D and R-Precision Evaluation . 27
F.2. Extended Discussion of Ablation Studies . 28
F.3. View-guidance Ablation Study . 30

G. Additional Qualitative Results—More AYG Samples 31
G.1. Text-to-4D Samples . 31
G.2. Autoregressively Extended and Looping Text-to-4D Synthesis . 31
G.3. More Comparisons to Make-A-Video3D . 31
G.4. Videos Generated by AYG’s fps-conditioned Video Diffusion Model . 31

14

A. Supplementary Videos

For fully rendered videos, we primarily refer the reader to our project page, https://research.nvidia.com/labs/
toronto-ai/AlignYourGaussians/, which shows all our results in best quality.

Moreover, we include 3 videos in the following google drive folder: https://drive.google.com/drive/
folders/1I7e6aj-7BBrIVdePyHEQDGUxLEEls3-e:
• ayg text to 4d.mp4: This video contains many text-to-4D generation results, comparisons to MAV3D [79] and au-

toregressively extended and looping 4D sequences. Moreover, we show how we compose different 4D sequences into a
large scene as in Fig. 1.

• ayg ablation study.mp4: This video contains different generated text-to-4D sequences for our ablation study, com-
paring our main Align Your Gaussians model with the different modified versions in the ablations. Note that these ablation
results only use 4,000 optimization steps in the second dynamic 4D optimization stage for efficiency (see Appendix F.2).

• ayg new video model.mp4: This video shows generated 2D video samples for different fps conditionings from our
newly trained latent video diffusion model for this project.

Note that all videos shown on the project page leverage an additional fine-tuning stage with additional optimization steps
compared to the results shown in the paper and in ayg text to 4d.mp4. See Appendix C.9 for a discussion on additional
fine-tuning and optimization.

B. Related Work—Extended Version

Diffusion Models. Align Your Gaussians leverages multiple different diffusion models (DMs) [27, 80, 81]. DMs have
revolutionized deep generative modeling in the visual domain, most prominently for image synthesis [18, 30, 57, 70, 74].
They leverage a forward diffusion process that gradually perturbs input data towards entirely random noise, while a denoiser
neural network is learnt to reconstruct the input. Specifically, AYG builds on large-scale text-to-image [5, 14, 21, 24, 61, 67,
70, 72, 98], text-to-video [1, 7, 22, 23, 25, 28, 38, 78, 90, 91, 94, 107] and text-to-multiview-image DMs [42, 44, 45, 47,
64, 75, 76, 97]. A popular framework for efficient yet expressive generative modeling with DMs is the latent DM approach,
where data is mapped into a compressed latent space with an autoencoder and the DM is trained in a more efficient manner
in this latent space [70, 86]. The most prominent model of this type is Stable Diffusion [70], and AYG uses exclusively
latent DMs which are based on Stable Diffusion. Specifically, apart from Stable Diffusion 2.1, we retrain a VideoLDM [7]
for fps-conditioned text-to-video synthesis, which starts from a Stable Diffusion image generator as base model. Moreover,
AYG uses MVDream [76], a text-guided multiview latent DM similarly fine-tuned from Stable Diffusion.

Text-to-3D Generation with Score Distillation. Text-conditioned image DMs are often trained on large-scale datasets
consisting of hundreds of millions or billions of text-image pairs. However, such huge text-annotated datasets are not available
for 3D data. While there exists a rich literature on 3D DMs trained on small explicit 3D or multiview image datasets [6, 34,
39, 46, 51, 56, 77, 89, 104, 108], the lack of large text-annotated 3D training datasets is a challenge for 3D generative
modeling. Aiming to overcome these limitations, score distillation methods, introduced in the seminal work by Poole et al.
[62], use large-scale text-guided 2D diffusion models to distill 3D objects in a per-instance optimization process. A 3D
scene, parametrized by learnable parameters, is rendered from different camera perspectives and the renderings are given
to a 2D diffusion model, which can provide gradients to make the renderings look more realistic. These gradients can be
backpropagated through the rendering process and used to update the 3D scene representation. This has now become a
flourishing research direction for 3D generative modeling [10, 11, 17, 20, 31, 35, 40, 41, 48, 52, 82, 85, 88, 92, 96, 109].
AYG also builds on the score distillation framework.

Text-to-4D Generation. The vast majority of papers on score distillation tackles static 3D object synthesis. To the best
of our knowledge, there is only one previous paper that leverages score distillation for text-guided generation of dynamic
4D scenes, Make-A-Video3D (MAV3D) [79]. Hence, this is the most related work to AYG. However, MAV3D uses neural
radiance fields [54] with HexPlane [9] features as 4D representation, in contrast to AYG’s dynamic 3D Gaussians, and it does
not disentangle its 4D representation into a static 3D representation and a deformation field modeling dynamics. MAV3D’s
representation prevents it from composing multiple 4D objects into large dynamic scenes, which our 3D Gaussian plus
deformation field representation easily enables, as we show. Moreover, MAV3D’s sequences are limited in time, while we
show a novel autoregressive generation scheme to extend our 4D sequences. AYG outperforms MAV3D qualitatively and
quantitatively and synthesizes significantly higher-quality 4D scenes. Our novel compositional generation-based approach
contributes to this, which MAV3D does not pursue. More specifically, in contrast to MAV3D, our AYG shows how to
simultaneously leverage image and video diffusion models for improved synthesis in the 4D generation stage, and moreover

15

https://research.nvidia.com/labs/toronto-ai/AlignYourGaussians/
https://research.nvidia.com/labs/toronto-ai/AlignYourGaussians/
https://drive.google.com/drive/folders/1I7e6aj-7BBrIVdePyHEQDGUxLEEls3-e
https://drive.google.com/drive/folders/1I7e6aj-7BBrIVdePyHEQDGUxLEEls3-e

leverages a 3D-aware multiview image diffusion model for improved 3D generation in the initial stage. Finally, instead of
regular score distillation sampling [62], used by MAV3D, in practice AYG employs classifier score distillation [102]. Note
that MAV3D did not release any code or model checkpoints and its 4D score distillation leverages the large-scale Make-A-
Video [78] text-to-video diffusion model, which also is not available publicly.

3D Gaussian Splatting and Deformation Fields. AYG leverages a 3D Gaussian Splatting-based 4D representation with
deformation fields to model dynamics. 3D Gaussian Splatting [36] has been introduced as an efficient 3D scene representation
and, concurrently with our work, has also been employed for text-to-3D generation by DreamGaussian [83], GSGEN [12],
GaussianDreamer [101], LucidDreamer [40] and another work also called LucidDreamer [13]. However, these works syn-
thesize only static 3D scenes, but do not consider dynamics. Deformation fields have been widely used for dynamic 3D scene
reconstruction [8, 33, 53, 59, 60, 63, 84]. Concurrently with our work, also several papers on dynamic 3D Gaussian Splatting
emerged [50, 93, 95, 100, 110], similarly tackling the dynamic 3D scene reconstruction task. However, none of these works
address generative modeling.

Compositional Generation. A crucial part of AYG is that it combines multiple diffusion models when performing
score distillation. Specifically, in the 4D stage we combine a text-to-image with a text-to-video diffusion model in the
form of a product distribution between the two and we then leverage the gradients of this product distribution for score
distillation. This can be viewed as a form of compositional generation. Usually, in compositional generation, different
diffusion models, or the same diffusion model with different text-conditionings, are combined such that multiple conditions
are fulfilled during generation. Formally, this can be achieved by forming the product distribution of different models, see,
for instance, Liu et al. [43] and Du et al. [19]. This has been used for controllable image generation. Analogously, we
perform a form of compositional generation by composing an image and a video diffusion model to generate dynamic 4D
assets whose renderings obey both the text-to-image and text-to-video model distributions simultaneously. Instead of aiming
for controllability our goal is to simultaneously enforce smooth temporal dynamics (video model) and high individual frame
quality (image model).

Animation and Motion Synthesis. AYG is also broadly related to the rich literature on character animation and motion
synthesis with deep generative models; see, for example, the recent works by Rempe et al. [68] and Yuan et al. [103].
However, this line of work usually only considers the generation of joint configurations of human skeletons or similar low-
dimensional simplified representations. An interesting direction for future work would be to combine these types of models
with a method like our AYG. For instance, one could first synthesize a rough motion trajectory or motion path, and AYG
could then generate a detailed character animation following this trajectory. There is also work on reconstructing animatable
3D assets directly from videos [99]. It would be interesting to extend AYG towards extracting assets from the synthesized
4D scenes which are simulation-ready and fully animatable using standard graphics software. Finally, AYG is also related to
the broader literature on computer animation using classical methods without deep learning; see, for instance, Kerlow [37].

Further Concurrent Work. Concurrently with us, Dream-in-4D [106] also developed a new text-to-4D synthesis scheme.
In contrast to AYG, the work leverages a NeRF-based 4D representation and focuses on image-guided and personalized
generation, instead of using dynamic 3D Gaussians and targeting temporally extended generation as well as the possibility to
easily compose different 4D assets in large scenes (one of the goals of AYG). Hence, their direction is complementary to ours,
and it would be interesting to also extend AYG to personalized and image-guided 4D generation. The image-to-4D task is also
tackled by Animate124 [105], which similarly leverages a dynamic NeRF-based representation. Moreover, 4D-fy [3] also
addresses text-to-4D synthesis, combining supervision signals from image, video and 3D-aware diffusion models. However,
like Dream-in-4D and Animate124, the work leverages a NeRF-based representation with a multi-resolution feature grid in
contrast to AYG’s dynamic 3D Gaussians. Moreover, 4D-fy does not explicitly disentangle shape and dynamics into a 3D
component and a deformation field. Note that, in contrast to AYG, none of the mentioned works demonstrated temporally
extended generation, the possibility to change the text prompt during synthesis or the ability to easily compose multiple 4D
assets in large scenes.

C. Details of Align Your Gaussians’ 4D Representation and Optimization

C.1. 3D Representation

We initialize each scene with 1,000 3D Gaussians spread across a sphere with radius 0.3 located on the origin (0, 0, 0). Each
Gaussian is initialized with a random RGB color and spherical harmonics coefficients of 0. As we use isotropic covariances,
we only make use of a single scaling parameter per Gaussian, such that Gaussians are spherical. We follow Kerbl et al. [36]
to initialize the scaling and opacity parameters. Similar to Kerbl et al. [36], we add and delete Gaussians during the initial 3D
optimization steps to densify regions requiring more detail and prune Gaussians that are not used for rendering. Gaussians

16

with an average magnitude of position gradients above 0.002 are densified, and Gaussians with opacity less than 0.005 are
pruned every 1,000 steps starting from the 500-th step. Additionally, we limit the number of Gaussians such that we only
perform the densification step if the total number of Gaussians is less than 50,000, and we also reset the opacities to have the
maximum value of 0.01 (after sigmoid) every 3,000 steps.

C.2. Deformation Field

After the 3D Gaussians are optimized into a 3D scene in the first stage, the scene dynamics are modeled by a deformation field
∆Φ(x, y, z, τ) = (∆x,∆y,∆z), defined through a multi-layer perceptron (MLP) with parameters Φ. We encode (x, y, z, τ)
with the sinusoidal positional encoding [87]. We use 4 frequencies (each with sine and cosine components), resulting in a
32-dimensional input. The MLP with parameters Φ consists of linear layers with ReLU [55] activation functions. We include
Layer Normalization [2] before the ReLU every second layer, as we found it helped stabilize optimization. The last layer of
Φ contains a linear layer that is initialized with zero weights, followed by a soft clamping layer (f(x) = tanh(x/0.5)∗0.5) so
that it produces the 3-dimensional output (∆x,∆y,∆z) clamped between (−0.5, 0.5). Furthermore, we preserve the initial
3D Gaussians for the first frame, i.e. ∆Φ(x, y, z, 0) = (0, 0, 0), by multipying the output with ξ(τ), and the final output is
given as (ξ(τ)∆x, ξ(τ)∆y, ξ(τ)∆z) where ξ(τ) = τ0.35 such that ξ(0) = 0 and ξ(1) = 1. Given the deformation offsets
(∆x,∆y,∆z), we can visualize the dynamic 4D scene defined by Gaussians at a given time τ by running Φ for all Gaussians
and rendering them using the renderer from Kerbl et al. [36].

C.3. Frames-Per-Second (fps) Sampling

At each 4D optimization step, we sample a fps ∈ {4, 8, 12} from the distribution p(fps = 4) = 0.81, p(fps = 8) =
0.14, p(fps = 12) = 0.05. This scheme samples lower fps more (faster video speed) to encourage our optimization process
to converge to a 4D scene with larger motion. Our time interval ranges from 0 to 1, and we set 0.75 as the length of the time
interval covering a 16 frame 4 fps video (i.e. τ ∈ [0, 1] and 0.75 corresponds to a 4 seconds video). After an fps value is
sampled, we sample the starting time τs ∼ U(0, 1 − 3.0/fps), and calculate the frame times for the 16 frames from τs and
fps. This strategy is inspired by Singer et al. [79].

C.4. Rigidity Regularization

Following Luiten et al. [50], we regularize the deformation field such that nearby Gaussians deform similarly. From the 3D
optimized scene after the first stage, we pre-calculate 40 nearest neighbor Gaussians for each Gaussian. Then, at each 4D
optimization step, we reduce the following loss:

LRigidity-Reg. =
1

40

40∑
i=1

||∆Φ −∆ΦNNi
||22 (5)

where the term inside the summation denotes the L2 distance between the deformation values of Gaussians and their i-th
nearest neighbor.

C.5. JSD-based Regularization of the Evolving Distribution of the Dynamic 3D Gaussians

Here, we explicitly write out the regularization term introduced in Sec. 3.4, which is based on the Jensen-Shannon divergence
and used to regularize the evolving distribution of the dynamic 3D Gaussians. It is used during the optimization of the
deformation field when generating the temporal dynamics of the 4D sequences. The idea is to regularize the mean and the
diagonal covariance of the distribution of the 3D Gaussians to stay approximately constant during the optimization of the
temporal dynamics. The mean and the diagonal covariance capture an object’s position (mean of the distribution of the
Gaussians) and its size (variances of the distribution of the Gaussians in each xyz-direction, i.e., diagonal entries of the
covariance matrix). Hence, keeping the mean and the diagonal covariance approximately constant ensures that the temporal
dynamics of the 4D assets induced by the video model do not simply move the objects around or change them in size, but
instead produce more complex and meaningful deformations and motions, while maintaining object size and position. The
technique stabilizes the optimization of the deformation field and helps ensuring that the learnt motion is realistic. Note that
we also do not necessarily want the mean and covariances to be exactly the same across time, because some motion may nat-
urally require them to vary (e.g. a running horse would potentially be more realistic with an oscillating center of mass), hence
we use a “soft” regularization strategy instead of, for instance, a hard re-centering and re-scaling during the optimization.

Since we only want to regularize the mean and the variances in each xyz-direction, we can model the distribution of
the 3D Gaussians at time τ by a Gaussian distribution N (ντ ,Γτ). We calculate the means ντ and diagonal covariances

17

Γτ of the entire set of 3D Gaussians (using their means µi) at times τ along the 4D sequence (see Fig. 4). As explained
above, we would like to ensure that this distribution stays approximately the same during the optimization of the deformation
field. To this end, we choose the Jensen–Shannon Divergence (JSD) as similarity metric measuring the distance between the
distributions at different times τ . The JSD between N (ν0,Γ0) at time 0 and N (ντ ,Γτ) at time τ is

JSD (N (ν0,Γ0)||N (ντ ,Γτ)) =
1

2
KL

(
N (ν0,Γ0)

∣∣∣∣∣∣∣∣12 (N (ν0,Γ0) +N (ντ ,Γτ))

)
+

1

2
KL

(
N (ντ ,Γτ)

∣∣∣∣∣∣∣∣12 (N (ν0,Γ0) +N (ντ ,Γτ))

)
.

(6)

Unfortunately, the mixture distribution on the right hand side of the KL terms is generally not Gaussian. Therefore, it is gener-
ally not possible to derive a closed-form expression for the JSD between two Gaussians. However, we can make a simplifying
modification here. Instead of calculating the mixture distribution we average the means and covariances from the two dis-
tributions N (ν0,Γ0) and N (ντ ,Γτ) and construct a corresponding Gaussian distribution N

(
1
2 (ν0 + ντ) ,

1
2 (Γ0 + Γτ)

)
,

which we use instead of the mixture distribution. Hence, we have

JSD (N (ν0,Γ0)||N (ντ ,Γτ)) → LJSD-Reg. :=
1

2
KL

(
N (ν0,Γ0)

∣∣∣∣∣∣∣∣N (
1

2
(ν0 + ντ) ,

1

2
(Γ0 + Γτ)

))
+

1

2
KL

(
N (ντ ,Γτ)

∣∣∣∣∣∣∣∣N (
1

2
(ν0 + ντ) ,

1

2
(Γ0 + Γτ)

))
,

(7)

which serves as our novel JSD-based regularization term LJSD-Reg. to regularize the evolving distribution of the dynamic 3D
Gaussians. Specifically, the deformation field is regularized with LJSD-Reg. such that the mean and the variances in xyz-
direction of the distribution of the 3D Gaussians at time τ do not deviate significantly from the corresponding mean and
variances at time 0 (recall that the initial Gaussians at τ = 0 are not subject to any deformation and hence fixed).

We can write out the above as

LJSD-Reg. :=
1

2
KL

(
N (ν0,Γ0)

∣∣∣∣∣∣∣∣N (
1

2
(ν0 + ντ) ,

1

2
(Γ0 + Γτ)

))
+

1

2
KL

(
N (ντ ,Γτ)

∣∣∣∣∣∣∣∣N (
1

2
(ν0 + ντ) ,

1

2
(Γ0 + Γτ)

))
=

∑
i∈{x,y,z}

[
−1

2
log [2] +

1

2
log

[
Γi
0 + Γi

τ

]
− 1

4
log

[
Γi
0

]
− 1

4
log

[
Γi
τ

]
+

1

4

(νi
τ − νi

0)
2

Γi
0 + Γi

τ

]
,

(8)

for the three dimensions i ∈ {x, y, z} and where Γi denotes the i-th diagonal entry in the diagonal covariance matrix Γ (since
we use diagonal covariance matrices, we obtain this simple factorized form). The gradients with respect to ντ and Γτ , which
are calculated from the learnt distribution of the evolving 3D Gaussians, are

∇νi
τ
LJSD-Reg. =

1

2

νi
τ − νi

0

Γi
0 + Γi

τ

, (9)

∇Γi
τ
LJSD-Reg. =

1

2

1

Γi
0 + Γi

τ

− 1

4

1

Γi
τ

− 1

4

(νi
τ − νi

0)
2

(Γi
0 + Γi

τ)
2
. (10)

By analyzing the first and second derivatives it is easy to see that LJSD-Reg. has a unique minimum when

νi
τ = νi

0 (11)

and

Γi
τ =

1

2

[
(νi

τ − νi
0)

2 +

√
(νi

τ − νi
0)

4 + 4Γi
0
2
]

νi
τ=νi

0= Γi
0 (12)

for all i ∈ {x, y, z}. This implies that LJSD-Reg. is a meaningful regularization term for the means and variances in xyz-
direction of the distribution of the evolving dynamic 3D Gaussians. It ensures that the distribution’s mean ντ and diagonal
covariance Γτ remain close to the initial ν0 and Γ0 during the optimization of the deformation field. That said, note that

18

LJSD-Reg. is not necessarily an accurate approximation of the true JSD. However, we found that this approach worked very
well in practice during score distillation.

We opted for the JSD-based approach, because we wanted to use a symmetric distribution similarity metric. Potentially,
we could have formulated our regularization also based on a Wasserstein distance, symmetrized KL divergence or regular
non-symmetric KL divergence. However, we implemented the JSD-based approach above first and it worked right away and
significantly improved AYG’s optimization behavior and the 4D results. Therefore, we decided to leave the exploration of
differently defined regularizations for the evolving distribution of the dynamic 3D Gaussians to future research.

C.6. Camera Distribution

In the initial 3D stage, we follow MVDream [76] to sample random cameras. At each optimization step, we sample a field-
of-view fov ∼ U(15, 60), an elevation angle elv ∼ U(10, 45) and an azimuth angle azm ∼ U(0, 360). The camera distance

is calculated as cam d = s/ tan(
fov

2
∗ π

180
) where s ∼ U(0.8, 1.0) is a random scaling factor. The sampled camera looks

towards the origin (0,0,0) and the images are rendered at 256× 256 resolution.
At each 4D optimization step, we sample fov ∼ U(40, 70), elv ∼ U(−10, 45), azm ∼ U(0, 360), and cam d ∼

U(1.5, 3.0). We use dynamic cameras where the camera location changes across the temporal time domain. For this purpose,
we additionally sample offset values elv offset ∼ U(−13.5, 30) and azm offset ∼ U(−45, 45) and construct 16 cameras
(to be used for rendering, and consequently, to be used as input to the video diffusion model that expects a 16-frame input)
by setting elvi = elv + elv offset ∗ i/15 and azmi = azm + azm offset ∗ i/15 for i ∈ {0, ..., 15}, where elvi and
azmi corresponds to the elevation and azimuth angles of the i-th frame’s camera. We use the same field-of-view and camera
distance across the 16 frames. We render frames at 160 × 256 resolution, which conforms to the aspect ratio that the video
diffusion model is trained on.

C.7. Diffusion Models

As discussed, AYG leverages a latent text-to-image diffusion model [70], a latent text-to-video diffusion model [7], and a
latent text-to-multiview-image diffusion model [76] in its compositional 4D score distillation framework.

For the latent text-to-multiview-image diffusion model we use MVDream [76].3 For the latent text-to-video diffusion
model, we train our own model, largely following VideoLDM [7] but with more training data and additional fps conditioning,
see Appendix E.1. For the latent text-to-image diffusion model we use the spatial backbone of our newly trained video
diffusion model, removing its temporal layers. This spatial backbone corresponds to a version of Stable Diffusion 2.1 [70]4

that was fine-tuned for generation at resolution 320× 512 (see details in Blattmann et al. [7]).

C.8. Rendering Resolution

In the initial 3D synthesis stage, we render the scenes at resolution 256 × 256. This is the resolution at which MVDream
operates, i.e., its encoder takes images of this resolution. We additionally perform bilinear rescaling to 320×512 to calculate
our text-to-image model’s score distillation gradient. The text-to-image model’s encoder accepts images of this resolution
after fine-tuning (see previous subsection). In the main 4D synthesis stage, we render at resolution 256 × 160 and perform
bilinear rescaling to 320 × 512 to calculate both the text-to-image model’s and the text-to-video model’s score distillation
gradients. They share the same encoder, which was fine-tuned to operate at this resolution. For evaluation and visualization,
we render at 512× 320 resolution and pad to 512× 512 if necessary.

C.9. Additional Fine-tuning and Optimization

We explored adding more Gaussians to further improve the quality of the generated 4D scenes. As mentioned in Ap-
pendix C.1, we only perform densification steps if the total number of Gaussians is less than 50,000 for the initial 3D
synthesis stage, and then optimize the deformation field in our 4D synthesis stage, as we found that this strategy gave us the
best motion. Once optimized, we can further fine-tune the dynamic 4D scenes by doing a similar two-stage optimization. In
the first additional stage, we continue optimizing the 3D Gaussians (not the deformation field) and do further densification
steps even when the number of Gaussians is more than 50,000. On average, we end up with 150,000 Gaussians in this stage.
After that, in the second fine-tuning stage, we continue optimizing the deformation field, which has already been optimized
well previously, with all the Gaussians including the newly added ones. We use the same hyperparameters as in the initial
3D/4D stages except that we reduce the learning rates by 1/5 and increase the rendering image resolution to 512×512 for

3https://huggingface.co/MVDream/MVDream
4https://huggingface.co/stabilityai/stable-diffusion-2-1

19

https://huggingface.co/MVDream/MVDream
https://huggingface.co/stabilityai/stable-diffusion-2-1

the additional 3D optimization stage. For the two additional stages, we optimize for 7,000 steps and 3,000 steps on average,
respectively. Also see the hyperparameters in Appendix E.2.

All results shown on the project page, https : / / research . nvidia . com / labs / toronto - ai /
AlignYourGaussians/, correspond to 4D assets subject to this additional fine-tuning. All results shown in the pa-
per itself as well as in the supplementary video ayg text to 4d.mp4 only use a single 3D plus 4D optimization run
without this additional fine-tuning. Also the quantitative and qualitative comparisons to MAV3D [79] in Sec. 4 and Ap-
pendix F.1 only use a single 3D and 4D optimization. This implies that with the additional fine-tuning described here and
shown on the project page, we would possibly outperform MAV3D by an even larger margin in the user study. Also the
ablation studies were carried out with only a single 3D plus 4D optimization without fine-tuning, and in that case we addi-
tionally only optimized for a total of 4,000 steps in the second 4D optimization stage in the interest of efficiency (see Sec. 4
and Appendix F.2).

D. Align Your Gaussian’s Synthesis Framework

Here, we discuss AYG’s compositional generation framework in more detail and derive AYG’s score distillation scheme.

D.1. AYG’s Compositional Generation Framework

Our goal during AYG’s main 4D distillation is to simultaneously synthesize smooth and realistic temporal dynamics while
also maintaining a high individual frame quality. Formally, this means that we would like to fulfill two objectives at once:
1. A set of 2D frames {xci

τi}F rendered from the 4D sequence at consecutive time steps τi and smoothly changing camera
positions ci (dynamic cameras) should form a realistic dynamic video and should be high probability under the text-to-
video model pvid({zciτi}F).

2. Individual frames x̃
c̃j
τ̃j

at possibly different time steps τ̃j and camera positions c̃j should, each individually, be high

probability under the text-to-image model pim(x̃
c̃j
τ̃j
).

If we want to ensure that both criteria are fulfilled simultaneously, it means that we are interested in generating 4D sequences
whose renderings obey the product distribution of pvid and pim, i.e., pvid pim. This exactly corresponds to a form of composi-
tional generation [19, 43]. In compositional generation, one often combines different diffusion models, or the same diffusion
model with different text-conditionings, such that multiple conditions are fulfilled during generation, usually with the goal
of controllable image generation or image editing. In that case, one leverages the product distribution of the corresponding
diffusion model distributions with the different conditionings. Conceptually, this is analogous to what we are doing in AYG,
just that we are doing a version of compositional generation by composing an image and a video diffusion model to generate
dynamic 4D assets whose renderings obey both the text-to-image and text-to-video model distributions simultaneously. In-
stead of aiming for controllability our goal is to simultaneously enforce smooth temporal dynamics (video model) and high
individual frame quality (image model).

One may ask, why do we even need the additional text-to-image model? Should the video model itself not also enforce
high individual frame quality? The number of text-video pairs used to train text-to-video models is typically significantly
smaller than the huge text-image datasets utilized when training text-to-image models. This makes text-to-video models,
including the one we trained, often slightly less robust and more unstable than text-to-image models and they yield noisier
gradients in the score distillation setting. Generally, video diffusion models are not as mature as image diffusion models yet.
This motivates us to compose both, the image and the video model, where the video model can synthesize temporal dynamics
and the image model ensures that high individual frame quality is maintained despite potentially somewhat noisy gradients
of the video model. Looking at it from another perspective, the image model essentially stabilizes the optimization process.

We have explained this for the 4D generation stage here, but something very similar occurs also in AYG’s initial 3D
generation stage, where a text-conditioned multiview-image diffusion model [76] is composed with a regular large-scale
text-to-image model [70] in the form of their product distribution for score distillation. The motivation is almost the same.
The multiview image model is able to generate a set of multiview-consistent images, similar to the set of consecutive frames
of the video model, but it was trained only on a limited 3D dataset and therefore does encode the biases of this small 3D
dataset. Including an additional general text-to-image prior can stabilize optimization and boost performance. Moreover, by
augmenting the image model’s text conditioning with view prompts, we can easily break the symmetry inherent in the multi-
view diffusion model, which does not generate objects in a canonical orientation. Note, however, that our main contribution
is the compositional generation approach for AYG’s 4D stage and this has been our main focus in this paper. AYG’s 4D stage
could also be combined with other methods to generate the initial static 3D assets.

20

https://research.nvidia.com/labs/toronto-ai/AlignYourGaussians/
https://research.nvidia.com/labs/toronto-ai/AlignYourGaussians/

D.2. AYG’s Score Distillation Scheme

Let us now formalize this, while focusing on the 4D stage (derivations for the 3D stage proceed analogously). Following the
above motivation, when optmizing the deformation field Φ through score distillation we seek to minimize a reverse Kullback-
Leibler divergence (KLD) from qΦ, the distribution over the 4D scene’s renderings defined through the deformation field Φ, to
the product distribution pvid pim of the diffusion models used as teachers, i.e., KL

(
qΦ

∣∣∣∣pvidpim
)
. Since pvid and pim are defined

through diffusion models, in practice we minimize the KL not just for the clean renderings, but for diffused renderings at all
diffusion time steps t, i.e.,

KL
(
qΦ

(
{zciτi}F , {z̃

c̃j
τ̃j
}M

) ∣∣∣∣∣∣∣∣pγvid

(
{zciτi}F

) M∏
j=1

pκim

(
z̃
c̃j
τ̃j

))
, (13)

which is exactly the equation from the main paper in Sec. 3.2. Here, we now added some details: In general we can always
consider a set of F +M rendered frames, where {zciτi}F are the F consecutive frames given to the video model and {z̃c̃jτ̃j}M
are another M independent frames given to the image model (since these are independent, the image model operates on them
independently; hence the product in the equation). Following the notation in the main paper, z denotes diffused renderings
and we omit diffusion time subscripts t. Note that, as discussed in the main paper, in practice the M frames given to the
image model are just a subset of the F frames given to the video model. However, the framework is general. Moreover, γ and
κ are temperatures which scale the width of the distributions pvid and pim. They can act as hyperparameters controlling the
relative strength of the gradients coming from the video and image model, respectively. Note that for now we omit explicitly
indicating the text conditioning in the equations in the interest of brevity.

The derivation of our score distillation framework through minimizing the reverse KLD between the rendering distribution
and the teacher distribution follows Poole et al. [62] (Appendix A.4). In practice, one typically gives different weights to the
KL minimization for different diffusion times t, and the full SDS gradient can be written as

∇ΦLAYG
SDS ({x} = g(Φ)) = Et,ϵ

[
w(t)

σt

αt
∇ΦKL

(
qΦ

(
{zciτi}F , {z̃

c̃j
τ̃j
}M

) ∣∣∣∣∣∣∣∣pγvid

(
{zciτi}F

) M∏
j=1

pκim

(
z̃
c̃j
τ̃j

))]
, (14)

where w(t) is a weighting function and αt and σt are the diffusion models’ noise schedule (note that all our diffusion models
use the same noise schedules). Specifically, the diffused renderings z are given as z = αtx + σtϵ, where x is a clean
rendering, ϵ ∼ N (0, I) is noise from a standard normal distribution, and the parameters αt and σt are defined such the
signal-to-noise ratio αt/σt is strictly decreasing as a function of the diffusion time t. Moreover, usually αt ∈ [0, 1] and
σt ∈ [0, 1] and in our case we use a “variance-preserving” noise schdule [27, 81] such that α2

t + σ2
t = 1. Furthermore, in

Eq. (14) above, g denotes the differentiable rendering function of the 4D scene, which produces all clean renderings {x}F+M

(omitting camera and 4D sequence time sub- and superscripts to keep notation concise), which are then diffused into {zciτi}F
and {z̃c̃jτ̃j}M .

We can now expand the KL divergence, similar to Poole et al. [62]:

∇ΦLAYG
SDS ({x}F+M = g(Φ)) = Et,ϵ

[
w(t)

σt

αt

(
∇Φ log qΦ

(
{zciτi}F , {z̃

c̃j
τ̃j
}M

)
−∇Φ log

[
pγvid

(
{zciτi}F

) M∏
j=1

pκim

(
z̃
c̃j
τ̃j

)])]
.

(15)
Let us now introduce some abbreviations for brevity, as in the main paper, and define Z := {zciτi}F , Z̃ := {z̃c̃jτ̃j}M and
X := {x}F+M . Moreover, for a concise notation we write the product over the image distributions as one distribution over
all the different diffused renderings with a slight abuse of notation, i.e.,

M∏
j=1

pκim

(
z̃
c̃j
τ̃j

)
= pκim

(
{z̃c̃jτ̃j}M

)
= pκim

(
Z̃
)
. (16)

We can keep in mind that pκim
(
Z̃
)

decomposes into a product, which will lead to different independent gradients. Now we

21

have

∇ΦLAYG
SDS (X = g(Φ)) = Et,ϵ

[
w(t)

σt

αt

(
∇Φ log qΦ

(
Z, Z̃

)
−∇Φ log

[
pγvid (Z) p

κ
im

(
Z̃
)])]

= Et,ϵ

[
w(t)

σt

αt

(
∇Φ log qΦ (Z)− γ∇Φ log pvid (Z)

+∇Φ log qΦ

(
Z̃
)
− κ∇Φ log pim

(
Z̃
))]

,

(17)

where we decomposed the log-terms. We can now analyze the individual terms, analogous to Poole et al. [62]. We have

∇Φ log pvid (Z) = ∇Z log pvid (Z)
∂Z

∂Φ
= − 1

σt
ϵ̂vid(Z, v, t)

∂Z

∂Φ
= −αt

σt
ϵ̂vid(Z, v, t)

∂X

∂Φ
, (18)

where we inserted the text-to-video model’s denoiser neural network ϵ̂vid(Z, v, t), which represents the diffusion model’s
score ∇Z log pvid (Z) as [27, 81, 86]

∇Z log pvid (Z) ∼ − 1

σt
ϵ̂vid(Z, v, t), (19)

and we now also explicitly indicate the model’s conditioning on the diffusion time t and a text prompt v. The image model
term ∇Φ log pim

(
Z̃
)

can be written similarly. Moreover, we have

∇Φ log qΦ (Z) =

(
∂ log qΦ (Z)

∂X
+

∂ log qΦ (Z)

∂Z

∂Z

∂X

)
∂X

∂Φ

=

(
− ∂

∂X
(αtX− Z)2 − αt

∂

∂Z
(αtX− Z)2

)
1

2σ2
t

∂X

∂Φ

= (−(αtX− Z) + (αtX− Z))
αt

σ2
t

∂X

∂Φ

= (−(αtX− αtX− σtϵ) + (αtX− αtX− σtϵ))
αt

σ2
t

∂X

∂Φ

=

(
αt

σt
ϵ− αt

σt
ϵ

)
∂X

∂Φ

= 0

(20)

which follows exactly Poole et al. [62], Appendix A.4, and analogously for ∇Φ log qΦ

(
Z̃
)

. The first term in Eq. (20)
corresponds to the gradient directly with respect to the variational parameters Φ through the renderings X, while the second
term is the path derivative through the diffused samples Z [69]. Note that in score distillation, we take an expectation over ϵ
and after such expectation both terms are individually zero as the noise ϵ has 0 mean.

We can now write our SDS gradient as

∇ΦLAYG
SDS (X = g(Φ)) = Et,ϵ

[
w(t)

(
γ ϵ̂vid(Z, v, t) + κ ϵ̂im(Z̃, v, t)

)]
∂X

∂Φ
. (21)

However, in SDS one typically includes the path derivative gradient (the second term in Eq. (20)) as a zero mean control
variate to reduce the variance of the SDS gradient when using a sample-based approximation of the expectation, following
Roeder et al. [69]. In other words, since

Et,ϵ

[
−w(t)

αt

σt
ϵ

]
∂X

∂Φ
= 0 (22)

after the expectation of the diffusion noise ϵ, we can freely include such terms in the SDS gradient as control variates and
scale with the temperatures γ and κ as needed. Now explicitly defining the different noise values ϵvid and ϵim as the diffusion
noises for the perturbed renderings given to the video and the image model, respectively, we can write

∇ΦLAYG
SDS (X = g(Φ)) = Et,ϵ

[
w(t)

(
γ ϵ̂vid(Z, v, t) + κ ϵ̂im(Z̃, v, t)

)]
∂X

∂Φ

= Et,ϵvid,ϵim

[
w(t)

(
γ (ϵ̂vid(Z, v, t)− ϵvid) + κ (ϵ̂im(Z̃, v, t)− ϵim)

)]
∂X

∂Φ
.

(23)

22

Note that we have been using different noise values to perturb the different renderings from the very beginning of the deriva-
tion, but we have not been explicit about it in the notation so far in the interest of conciseness.

In practice, one typically employs classifier-free guidance (CFG) [26] with guidance weights ωvid/im for the video and
image model, respectively. Hence, we have that

ϵ̂vid(Z, v, t) → ϵ̂vid(Z, v, t) + ωvid
[
ϵ̂vid(Z, v, t)− ϵ̂vid(Z, t)

]
(24)

for the video model, and for the image model analogously (ϵ̂vid(Z, t) indicates the denoiser prediction without text condi-
tioning). The no-CFG setting is recovered for ωvid/im = 0. Inserting above, we obtain

∇ΦLAYG
SDS (X = g(Φ)) = Et,ϵvid,ϵim

[
w(t)

{
γ

(
ωvid

[
ϵ̂vid(Z, v, t)− ϵ̂vid(Z, t)

]
+ ϵ̂vid(Z, v, t)− ϵvid︸ ︷︷ ︸

δvid
gen

)

+ κ

(
ωim

[
ϵ̂im(Z̃, v, t)− ϵ̂im(Z̃, t)

]
+ ϵ̂im(Z̃, v, t)− ϵim︸ ︷︷ ︸

δim
gen

)}
∂X

∂Φ

]
,

(25)

which is exactly Eq. (3) from the main paper.
As discussed in the main paper, recently, ProlificDreamer [92] proposed a scheme where the noise-based control variate

ϵ (ϵvid and ϵim here) is replaced by a separate diffusion model that models the rendering distribution. More specifically,
ProlificDreamer initializes this separate diffusion model from the diffusion model guiding the synthesis (ϵ̂vid(Z, v, t) and
ϵ̂im(Z̃, v, t) here), and then slowly fine-tunes on the diffused renderings (Z or Z̃ here). In our setting, one would initialize
from the video and the image model, respectively, in the two terms. This means that, at the beginning of optimization, the
terms δvid/im

gen in Eq. (25) would be zero. Inspired by this observation and aiming to avoid ProlificDreamer’s cumbersome
fine-tuning, we instead propose to simply set δvid/im

gen = 0 entirely, and simply optimize with

∇ΦLAYG
CSD (X = g(Φ)) = Et,ϵvid,ϵim

[
w(t)

{
ωvid

[
ϵ̂vid(Z, v, t)− ϵ̂vid(Z, t)︸ ︷︷ ︸

δvid
cls

]
+ ωim

[
ϵ̂im(Z̃, v, t)− ϵ̂im(Z̃, t)︸ ︷︷ ︸

δim
cls

]}∂X

∂Φ

]

= Et,ϵvid,ϵim

[
w(t)

{
ωvidδ

vid
cls + ωimδ

im
cls

}
∂X

∂Φ

]
,

(26)

which is exactly Eq. (4) from the main paper. Moreover, we have absorbed γ and κ into ωvid/im. Interestingly, this exactly
corresponds to the concurrently proposed classifier score distillation (CSD) [102], which points out that the above two terms
δvid/im

cls correspond to implicit classifiers predicting the text v from the video or images, respectively. CSD then proposes to
use only δvid/im

cls for score distillation, resulting in improved performance over SDS. We discovered that scheme independently,
while aiming to inherit ProlificDreamer’s strong performance.

The score for the first 3D stage looks exactly analogous, just that instead of the composition of the video and image
diffusion model, we have the composition of the MVDream multiview image diffusion model and the regular text-to-image
model.

D.3. AYG’s Parameter Gradients—Putting it All Together

In practice, AYG additionally uses negative prompt guidance, motion amplification, JSD regularization, and rigidity regular-
ization in the 4D stage, as well as view guidance in the initial 3D stage, see Sec. 3.4. Let us now put everything together.

Stage 1: 3D Synthesis. In the 3D stage, the entire gradient backpropagated into the 3D Gaussian splatting representation
θ is

∇θLAYG
3D-stage = Et,ϵ3D,ϵim

[
w(t)

{
ω3Dδ

3D
cls + ωimδ

im
cls

+ ωvg

(
ϵ̂im(Z̃, vaug, t)− ϵ̂im(Z̃, v, t)

)
+ ωneg

(
ϵ̂3D(Z, t)− ϵ̂3D(Z, vneg, t)

)}∂X

∂θ

]
,

(27)

where δ3D
cls corresponds to the implicit classifier score for the text-conditioned 3D-aware MVDream multiview diffusion

model, analogous to the implicit classifier score for the video model above. Moreover, we added the view guidance and

23

negative prompting terms [102]. Our negative prompt vneg in the 3D stage is “ugly, bad anatomy, blurry, pixelated obscure,
unnatural colors, poor lighting, dull, and unclear, cropped, lowres, low quality, artifacts, duplicate, morbid, mutilated,
poorly drawn face, deformed, dehydrated, bad proportions”, following Shi et al. [76]. We apply negative prompting only to
the MVDream 3D multiview diffusion model (the negative prompt is taken from MVDream, after all). For view guidance,
we attach “, front view” (azm ≤ 30◦ or azm ≥ 330◦), “, back view” (150◦ ≤ azm ≤ 210◦), “, overhead view” (elv ≥ 60◦)
and “, side view” (otherwise) at the end of a text prompt to construct the augmented prompt vaug. Furthermore, ϵ3D and
ϵim denote the diffusion noise values used to perturb the renderings given to the 3D-aware diffusion model and the regular
text-to-image model, respectively.

Stage 2: Adding Dynamics for 4D Synthesis. In the 4D stage, we apply our novel motion amplification mechanism
(Sec. 3.4) after we combined the regular implicit classifier score of the video model δvid

cls with the additional negative prompt-
ing term. Therefore, let us define

δ̂vid
cls+neg := δvid

cls + ωneg
(
ϵ̂vid(Z, t)− ϵ̂vid(Z, vneg, t)

)
. (28)

We can now write out the entire gradient used to update the deformation field Φ in AYG’s main 4D stage in a concise manner
as

∇ΦLAYG
4D-stage = Et,ϵvid,ϵim

[
w(t)

{
ωvid

(〈
δ̂vid

cls+neg

〉
frame-avg.

+ ωma

[
δ̂vid

cls+neg −
〈
δ̂vid

cls+neg

〉
frame-avg.

])
+ ωimδ

im
cls

}
∂X

∂Φ

]
+ λJSD ∇ΦLJSD-Reg. + λRigidity∇ΦLRigidity-Reg.,

(29)

where we inserted the motion amplification mechanism with scale ωma, negative prompting with weight ωneg, as well as the
additional regularizers. We only do negative prompting for the video model, using “low motion, static statue, not moving, no
motion” as the negative prompt vneg.

Use of Latent Diffusion Models. We would like to remind the reader that in the above derivations we have not explicitly
included our diffusion models’ encoders. All employed diffusion models are latent diffusion models [70, 86], see Ap-
pendix C.7. In practice, all score distillation gradients are calculated in latent space on encodings of the 4D scene renderings,
and the gradients are backpropagated through the models’ encoders before further backpropagated through the differentiable
rendering process into the 4D scene representation. However, AYG’s synthesis framework is general.

E. Experiment Details
E.1. Video Diffusion Model Training

We train a text-to-video diffusion model, following VideoLDM [7]. VideoLDM is a latent diffusion model that builds
on Stable Diffusion [70] as text-to-image backbone model and fine-tunes it on text-video datasets by inserting additional
temporal layers into the architecture. For details, see Blattmann et al. [7]. Here, we add conditioning on the frames-per-
second (fps) frame rate, following [78, 79], scale the number of frames from 8 to 16 frames, and train the model on a larger
dataset. Note that our video model was trained only for the purpose of 4D score distillation and is not meant to be a standalone
video generation system, which would require additional upsampling and interpolation modules.

Datasets. Our training initially utilizes the WebVid-10M dataset [4], which comprises 10 million text-video pairs. In our
analysis of the WebVid dataset, we noted the presence of many slow-motion videos. To address this, we implement a simple
filtering algorithm to exclude such data. Initially, we calculate optical flow at 2 fps utilizing the iterative Lucas-Kanade
method [49]. Following this, we filter out any videos where the average optical flow magnitude falls below a specified
threshold. Specifically, we set this threshold to be 10. We further filter data with aesthetic score [73] lower than 4.0 and train
our model for 100K iterations. To enhance the model’s generalization capabilities, we incorporate the HDVG-130M dataset
[90] in a subsequent fine-tuning phase for an additional 100K iterations. During fine-tuning, we specifically exclude data
containing keywords such as ‘talk’, ‘chat’, ‘game’, ‘screenshot’, ‘newspaper’, ‘screen’, and ‘microphone’ in text captions.
These keywords often indicate video recordings of interviews showing little scene dynamics or computer games with very
unusual, non-photorealistic visual appearance. Since there are many such videos in the dataset and we are not interested
in generating such videos or 4D scenes in this paper, we remove these videos from the training data. We also increase the
optical flow slow motion filtering [49] threshold to 20. Moreover, since WebVid-10M is much smaller than HDVG-130M, but
provides valuable training data with high-quality text annotations by human annotators, we slightly oversample the filtered
WebVid-10M data. Specifically, we do not sample training data as if we just merged WebVid and HDVG and then randomly
drew samples from the resulting dataset to form training batches. Instead, we sample in such a way as if we tripled the filtered

24

Table 3. Hyperparameters for the first stage (3D synthesis).

bs per GPU # GPUs # renders lrposition lrrgb lrsh lropacity lrscaling ωvg ωneg ω3D ωim

4 1 16 0.0002 0.01 0.0005 0.05 0.005 3.0 0.8 1.6 0.4

Table 4. Hyperparameters for the second stage (dynamic 4D synthesis).

bs per GPU # GPUs # renders lrΦ num. hidden Φ num. layers Φ λRigidity λJSD ωma ωneg ωvid ωim

1 4 64 0.001 128 5 100.0 30.0 24.0 0.8 1.0 1.0

WebVid data and only then merged with the filtered HDVG and sampled from the full training dataset randomly to construct
training batches. We train the model on 128 NVIDIA-80G-A100 GPUs, utilizing fp16 precision and a gradient accumulation
strategy with a batch size of 4 per-GPU. The total batch size, distributed across all GPUs, is 2048, achieved after complete
gradient accumulation.

Frames-per-second (fps) Conditioning. We condition the model on the frames-per-second (fps) frame rate (by using
cross-attention to the corresponding sinusoidal embedding). During training, the fps values are randomly sampled within a
range of 2 to 16. Given that lower fps often indicates more motion and presents a greater learning challenge, we sample low
fps more often. Specifically, we sample the training video fps based on the probability distribution p(fps) ∼ 1/fpsc, where c
is a hyperparameter. We choose c = 1.6 in our experiments.

Otherwise, our training exactly follows VideoLDM [7]. Samples from AYG’s latent video diffusion model are shown in
Figs. 15 to 17 in Appendix G.4 as well as in the supplementary video ayg new video model.mp4, demonstrating the
effect of the fps conditioning.

It is worth noting that we also explored training a larger latent video diffusion model with more parameters, improved
temporal attention layers and additional cross-frame attention [38, 94] for higher performance. While this model indeed
was able to generate noticeably higher quality videos, this did not translate into improved 4D distillation performance when
used during score distillation. It would be valuable to study the effect of different video diffusion models during text-to-4D
synthesis via score distillation in more detail. Based on these observations, we kept using the more memory efficient model
described in this section above, which more directly follows the architecture from Blattmann et al. [7], apart from the fps
conditioning.

E.2. Text-to-4D Hyperparameters

Stage 1. Table 3 summarizes the hyperparameters for the 3D optimization stage. bs denotes the batch size, and lrposition,
lrrgb, lrsh, lropacity and lrscaling denote the learning rates for the 3D Gaussians’ position, color, spherical harmonics, opacity
and scaling parameters, respectively. We use a single GPU for the optimization in the first 3D synthesis stage and a batch size
of 4. This means that we use 4 independent sets of 4 images each, given to MVDream, which takes sets of 4 images as input.
Each set of 4 images consists of renders with the correct relative camera angles for the multiview diffusion model MVDream.
The 4 sets of images are then fed to MVDream, and all images are additionally fed to the regular text-to-image diffusion
model (Stable Diffusion). Hence, in each optimization step, 16 different images are rendered in total from the 3D scene. For
lrposition, we start from 0.001 and decay to the specified value by the 500-th iteration. We note that we followed the learning
rate schedules used by DreamGaussian [83]. ωvg and ωneg denote the view guidance scale and negative prompt guidance scale,
respectively. ω3D is the weighting factor for the classifier score distillation term from MVDream [76] (p3D) and ωim is the
weighting factor for the classifier score distillation term from the image diffusion model (pim) (see Section 3.2). We sample
the diffusion time t in the range [0.02, 0.98] at the start of optimization and decay the range to [0.02, 0.5] by the 6,000-th
iteration for the image diffusion model (pim). For MVDream [76] (p3D), we directly follow their schedule which samples t
from [0.98, 0.98] at the start of optimization and decay the range to [0.02, 0.5] by the 8,000-th iteration. We randomly choose
black or white background during training. We run 10,000 optimization steps on average for this stage.

Stage 2. Table 4 summarizes the hyperparameters for the dynamic 4D optimization stage. bs again denotes the batch size,
and lrΦ, “num. hidden Φ” and “num. layers Φ” denote the learning rate, number of hidden units and number of layers for the
deformation MLP, respectively. λRigidity and λJSD denote the weighting terms for the rigidity regularization (Appendix C.4)
and the JSD-based dynamic 3D Gaussian distribution regularization (Appendix C.5). ωma specifies the motion amplification
scale, while ωneg is the negative prompt guidance scale for the video diffusion model. ωvid denotes the weighting term for the
video DM’s (pvid) classifier score distillation term and ωim denotes the weighting term for the image model’s (pim) classifier

25

Figure 9. Screenshot of instructions provided to participants of the user studies for comparing AYG and MAV3D [79] as well as for the
ablation studies.

score distillation term (see Section 3.2). Here, we used 4 GPUs per optimization with a batch size of 1 on each GPU. This
means that on each GPU a single batch of 16 consecutive 2D images is rendered, consistent with the video diffusion model,
which models 16-frame videos. Recall that, as discussed in Sec. 3.2, only four of those frames are also given to the regular
text-to-image diffusion model. Hence, in each optimization step, 64 different images are rendered in total from the dynamic
4D scene. We sample the diffusion time t in the range [0.02, 0.98] throughout the optimization process for the second stage.
We also run 10,000 optimization steps on average for this stage.

E.3. Evaluation Prompts

For the baseline comparison to MAV3D [79], we used all the 28 prompts from MAV3D’s project page:
“An alien playing the piano.”; “Shark swimming in the desert.”; “A dog wearing a Superhero outfit with red cape flying

through the sky.”; “A monkey eating a candy bar.”; “A squirrel DJing.”; “A cat singing.”; “A bear driving a car.”; “Chi-
huahua running on the grass.”; “A human skeleton drinking wine.”; “A yorkie dog eating a donut”; “A baby panda eating
ice cream”; “A kangaroo cooking a meal.”; “A humanoid robot playing the violin.”; “A squirrel playing the saxophone.”;

26

Table 5. R-Precision comparison to MAV3D [79] with the 300 text prompts also used by Singer et al. [78] and Singer et al. [79].

Method AYG (ours) AYG (ours) MAV3D [79] MAV3D [79]
3D-stage 4D-stage 3D-stage 4D-stage

R-Precision ↑ 82.2 81.7 82.4 83.7

“An octopus is underwater.”; “A silver humanoid robot flipping a coin.”; “A goat drinking beer.”; “A squirrel playing on a
swing set.”; “A panda playing on a swing set.”; “A crocodile playing a drum set.”; “A squirrel riding a motorcycle.”; “3D
rendering of a fox playing videogame.”; “A dog riding a skateboard.”; “An emoji of a baby panda reading a book.”; “Clown
fish swimming through the coral reef.”; “A space shuttle launching.”; “A corgi playing with a ball.”; “A panda dancing.”

For the ablation study, we selected the following 30 text prompts:
“A cat singing.”; “A corgi playing with a ball.”; “A cow running fast.”; “A dog wearing a Superhero outfit with red cape

flying through the sky.”; “A fox dressed in a suit dancing.”; “A monkey eating a candy bar.”; “A monkey is playing bass
guitar.”; “A panda dancing.”; “A panda surfing a wave.”; “A pig running fast.”; “A purple unicorn flying.”; “A space shuttle
launching.”; “A squirrel DJing.”; “A squirrel playing on a swing set.”; “A squirrel playing the saxophone.”; “A squirrel
riding a motorcycle.”; “A storm trooper walking forward and vacuuming.”; “An alien playing the piano.”; “an astronaut is
playing the electric guitar.”; “An astronaut riding a horse.”; “An astronaut riding motorcycle.”; “A panda reading a book.”;
“Beer pouring into a glass.”; “Chihuahua running.”; “Clown fish swimming.”; “A dog riding a skateboard.”; “Flying
dragon on fire.”; “Intricate butterfly flutters its wings.”; “Waves crashing against a lighthous.”; “Wood on fire.”

E.4. User Study Details

We conducted human evaluations (user studies) through Amazon Mechanical Turk to assess the quality of our generated 4D
scenes, comparing them with MAV3D [79] and performing ablation studies.

For the MAV3D comparison, we used the 28 rendered videos from MAV3D’s project page (https://make-a-
video3d.github.io/) and compared them against our model (AYG) using identical text prompts (see Appendix E.3
above). We rendered our dynamic 4D scenes from similar camera perspectives and created similar videos. We then asked
the participants to compare the two videos with respect to 6 different categories and indicate preference for one of the meth-
ods with an option to vote for ‘equally good’ in a non-forced-choice format. The 6 categories measure overall quality, 3D
appearance and 3D text alignment, as well as motion amount, motion text alignment and motion realism (see questions in
Fig. 9).

In the ablation studies, we proceeded similarly. We showed participants 4D animations for 30 text prompts (see Ap-
pendix E.3 above) generated by the full AYG model and by the modified, ablated models. Again, participants were asked to
choose the more favorable 4D character from each pair, with an option to vote for ‘equally good’.

For a visual reference, see Fig. 9 for a screenshot of the evaluation interface. In all user studies, the order of video
pairs (A-B) was randomized for each question. Note that since MAV3D uses an extra background model, while AYG does
not, we asked participants to focus only on the moving foreground characters and to not consider the background in their
responses. In all user studies, each video pair was evaluated by seven participants, totaling 196 responses for the MAV3D
comparison and 210 for each setup in the ablation study. We selected participants based on specific criteria: they had to be
from English-speaking countries, have an acceptance rate above 95%, and have completed over 1000 approved tasks on the
platform.

F. Additional Quantitative Results

F.1. Comparisons to MAV3D and R-Precision Evaluation

The important MAV3D baseline [79] did not release any code or models and its 4D score distillation leverages the large-scale
Make-A-Video [78] text-to-video diffusion model, which is also not available publicly. This makes comparisons to MAV3D
somewhat difficult and this is why we compared to MAV3D by using the available results on their project page. As reported
in the main text, we performed a user study comparing all their generated 4D scenes with AYG’s generated scenes with the
same text prompts. AYG outperforms MAV3D in our user study in all categories (see Table 1 in main text). Moreover, our
comparisons to MAV3D do not leverage any fine-tuning as discussed in Appendix C.9. With this fine-tuning, our quality
improvements over MAV3D are even larger, which would likely be reflected in an even higher preference for our 4D scenes
in the user study.

27

https://make-a-video3d.github.io/
https://make-a-video3d.github.io/

Table 6. Ablation study by user study on synthesized 4D scenes with 30 text prompts. For each pair of numbers, the left number is the
percentage that the full AYG model is preferred and the right number indicates preference percentage for ablated model as described in left
column. The numbers do not add up to 100 and the difference is due to users voting “no preference” (table copied here from main paper
for extended discussion in Appendix F.2).

Align Your Gaussians Overall 3D 3D Text Motion Motion Text Motion
(full model) Quality Appearance Alignment Amount Alignment Realism

v.s. w/o rigidity regularization 45.8/13.3 43.3/19.2 38.3/15.0 40.8/15.0 42.5/18.3 30.8/26.7
v.s. w/o motion amplifier 43.3/23.3 37.5/28.3 30.8/26.7 45.8/10.8 37.5/26.7 33.3/31.7
v.s. w/o initial 3D stage 67.5/15.0 57.5/21.7 64.2/15.0 60.8/21.7 60.8/20.8 59.2/24.2
v.s. w/o JSD-based regularization 40.0/25.0 40.0/27.5 36.7/27.5 41.7/24.2 39.2/29.2 45.0/24.2
v.s. w/o image DM score in 4D stage 42.5/22.5 39.2/27.5 36.7/25.8 33.3/25.9 37.5/30.0 27.5/40.0
v.s. SDS instead of CSD 44.2/35.8 40.0/27.5 35.8/35.0 35.0/27.5 35.0/34.2 32.5/35.8
v.s. 3D stage w/o MVDream 66.7/21.7 48.3/34.2 38.3/34.2 41.7/22.5 40.0/27.5 40.8/27.5
v.s. 4D stage with MVDream 50.8/27.5 38.3/34.2 41.6/29.2 39.2/35.0 44.2/30.0 39.2/31.7
v.s. video model with only fps 4 46.7/15.8 27.5/36.7 30.0/23.3 36.7/30.0 31.7/26.7 32.5/28.3
v.s. video model with only fps 12 48.3/29.2 30.8/29.2 29.2/28.3 35.0/28.3 35.0/30.0 39.2/26.7
v.s. w/o dynamic cameras 32.5/25.0 32.5/31.7 35.0/33.3 35.0/32.5 35.8/33.3 32.5/25.0
v.s. w/o negative prompting 44.2/28.3 38.3/32.5 31.7/29.2 29.2/31.6 33.3/30.0 37.5/28.3

MAV3D also reports R-Precision [32, 58] in their paper. R-Precision is commonly used in the text-to-3D literature as an
evaluation metric. In the R-Precision calculation, 2D renderings of the scene are given to a CLIP [65] image encoder and
the CLIP encoding is then used to retrieve the closest text prompt among a set of text prompts used in the evaluation. The
R-Precision value is then the top-1 retrieval accuracy, i.e., the percentage of correctly retrieved text prompts (this is, the text
prompt which was used to generate the 3D scene is correctly retrieved). However, R-Precision measures only 3D quality
(and more specifically the alignment of the 3D appearance with the text prompt) and does not in any way capture dynamics
at all. It is therefore a meaningless metric to evaluate dynamic scenes, which is the focus of our and also MAV3D’s work.

Nevertheless, for future reference and simply to follow MAV3D we also provide R-Precision evaluation results in Table 5.
We obtained the list of 300 prompts used in MAV3D’s R-Precision evaluation by the authors of MAV3D. Note that this
list of prompts was originally collected not for the evaluation of synthesized 4D dynamic scenes but for the evaluation of
video diffusion models in Make-A-Video [78]. To calculate our R-Precision scores with the 300 text prompts, we used the
evaluation protocol from https://github.com/Seth-Park/comp-t2i-dataset. Similarly to MAV3D, we
evaluated R-Precision both after the initial 3D stage and at random times τ of the dynamic 4D scene after the full 4D stage
optimization (MAV3D similarly first optimizes a static 3D scene and only then adds an additional temporal dimension to
generate a full dynamic 4D scene). Specifically, for 3D objects, we render with 20 different azimuth angles with a fixed
elevation of 15 degree, camera distance of 3 and field-of-view of 40. For dynamic 4D scenes, we sample 20 times τ together
with 20 different azimuth angles. We use majority voting over the 20 views as top-1 retrieval results for the R-Precision
calculation. The results are shown in Table 5.

We see that the two methods perform on par. Importantly, we do not know the exact evaluation protocol MAV3D used
(e.g. camera poses used for rendering), and in our experience these details matter and can influence the metric non-negligibly.
Hence, considering that the results of the two methods are extremely close, we conclude that the two methods perform
approximately similarly with respect to R-Precision. We also see that, for both methods, performance does not meaningfully
differ between the 3D and 4D stage. This means that both methods preserve the overall 3D object well when learning
dynamics in their main 4D stage.

We would like to stress again that R-Precision is in the end not very useful for the evaluation of dynamic 4D scenes, as
it completely misses the important temporal aspect and does not judge scene dynamics and object motion. We believe that
user studies are a more meaningful way to evaluate dynamic 4D scenes (also MAV3D performs various user studies in their
paper). Recall that in our user studies, we outperform MAV3D on all categories.

F.2. Extended Discussion of Ablation Studies

Here, we provide an extended discussion of our main ablation studies, originally presented in Table 2 in Sec. 4. We have
carried out an extensive number of ablations and there is not enough space in the paper’s main text to discuss all of them in
detail. For convenience, we copied the table here, see Table 6, and we will now discuss the different settings one by one.

28

https://github.com/Seth-Park/comp-t2i-dataset

Also see the supplementary video ayg ablation study.mp4, which shows dynamic 4D scenes for all ablations. Note,
however, that these 4D scenes were optimized with only 4,000 optimization steps in the second dynamic 4D optimization
stage in the interest of efficiency, considering that we had to optimize many 4D scenes for all ablations. The quality of the
shown 4D scenes is therefore somewhat lower than that of our main results shown elsewhere in the paper and on the project
page.

Full AYG v.s. w/o rigidity regularization. We can see a clear preference for the full AYG model compared to a variant
without rigidity regularization. Users strongly prefer the full model in all categories in Table 6. In the supplementary video
we see unrealistic distortions of the object for the baseline without rigidity regularization. Such distortions are prevented by
the regularization, as expected.

Full AYG v.s. w/o motion amplifier. Users prefer the full AYG variant that leverages the motion amplifier for all
categories. The difference in preference is most pronounced in the “Motion Amount” category, which validates that the
motion amplifier indeed amplifies motion. In the supplementary video, we can clearly observe enhanced motion compared
to the baseline without the motion amplifier.

Full AYG v.s. w/o initial 3D stage. Without the initial 3D stage, simultaneously optimizing the 3D object itself and
also distilling motion into the 4D scene results in unstable optimization behavior and no coherent dynamic 4D scenes can
be produced. This is visible in the supplementary video and also validated in the user study. The full AYG model with the
initial 3D stage is strongly preferred.

Full AYG v.s. w/o JSD-based regularization. We can also observe a clear preference for the full AYG model including
the JSD-based regularization of the distribution of the dynamic 3D Gaussians over an ablated model that does not use it. This
is visible in all categories in Table 6. In the supplementary video, we can see that without JSD-based regularization the 4D
sequences show little motion and only some slow floating of the entire objects can be observed. We hypothesize that this
slow global motion represents a local minimum of the video diffusion model, whose gradients are used to learn the dynamics.
Falling into this local minimum is prevented through the JSD-based regularization. With JSD-based regularization, more
complex, local motion is learnt instead of global translations or object size changes.

Full AYG v.s. w/o image DM score in 4D stage. A central design decision of AYG is the simultaneous use of both a
text-to-image diffusion model and a text-to-video diffusion model for score distillation in the main 4D optimization stage.
Hence, we compared to a variant that only uses the video model, but we find that the full AYG approach including the image
diffusion model score in the 4D stage is preferred, except for “Motion Realism”. However, this is a somewhat ambiguous
category, as people might have subjective opinions on what constitutes a better motion, such as preferring slow but consistent
motion versus large but artifact-prone motion. The full model wins on all other categories. The margin between the full and
ablated model is especially large on the 3D appearance and 3D text alignment categories. This is exactly what we expected
and why the text-to-image model is used, i.e., to ensure that high visual and 3D quality is maintained while the video model
is responsible for the optimization of the temporal dynamics. In line with that, in the supplementary video we can observe
some degradation in the 3D quality without the text-to-image diffusion model in the 4D stage. This justifies AYG’s design
composing a text-to-image and a text-to-video diffusion model for score distillation in the 4D stage.

Full AYG v.s. SDS instead of CSD. We have a somewhat similar observation when replacing classifier score distillation
(CSD) with regular score distillation sampling (SDS). The full model is preferred for all categories, except for the more
ambiguous “Motion Realism”. In the supplementary video we see slightly more distorted 3D objects and less motion when
using SDS instead of CSD.

Full AYG v.s. 3D stage w/o MVDream. Another central design decision of AYG is the use of the 3D-aware multiview-
image diffusion model MVDream [76] in its first 3D stage. In this ablation, we removed MVDream from the 3D stage
and optimized the 3D assets only with the text-to-image Stable Diffusion model [70], and then performed the dynamic 4D
distillation. We find that users prefer the full model by a large margin on all categories. In short, AYG is not able to produce
high-quality static 3D assets without MVDream, and then also the dynamic 4D optimization struggles because of the poor
3D initialization. It is worth pointing out, however, that there is a rich literature on score distillation of 3D assets using only
text-to-image models and arguably some of these techniques could help. As pointed out previously, the initial 3D assets used
by AYG in its main 4D stage could potentially also be produced by other methods.

Full AYG v.s. 4D stage with MVDream. The previous ablation makes one wonder whether it would help to also
include MVDream in the 4D optimization stage to ensure that geometric and multiview consistency is maintained during 4D
optimization at all times τ of the 4D sequences. However, we find that this is not the case. Users prefer the dynamic 4D
scenes generated by the regular AYG model over the one that also includes MVDream in the 4D stage for all categories in
the table. In the supplementary video, we see that including MVDream in the 4D stage can lead to odd motion patterns or
overall reduced motion. We hypothesize that the video diffusion model and the MVDream multiview diffusion model produce

29

Table 7. Ablation study on view guidance by user study on synthesized static 3D scenes from AYG’s initial 3D stage. We used 30 text
prompts, the same as in the other ablation studies. Numbers are percentages.

Method AYG w/ view guidance AYG w/o view guidance Equal
preference preferred preferred preference

Overall Quality 33.3 33.8 32.9
3D Appearance 28.6 29.0 42.4
3D Text Alignment 30.0 34.8 35.2

somewhat conflicting gradients, harming the 4D optimization process and suppressing the learning of smooth 4D dynamics.
Hyperparameter tuning and a carefully chosen weighting between the MVDream and video models in the composed score
distillation scheme could potentially address this, but we were not able to make this setting work better than the regular AYG
approach without MVDream in the 4D stage. Together with the previous ablation, we conclude that MVDream is a crucial
component of AYG, but only in its initial 3D stage.

Full AYG v.s. video model with only fps 4. Our newly trained latent video diffusion model is conditioned on the
frames-per-second (fps) frame rate and when optimizing dynamic scenes during AYG’s 4D stage we sample different fps
values. In this ablation, we ask what would happen if we only sampled the low fps = 4 value, which corresponds
to videos that show a lot of motion, but therefore are less smooth temporally (see the attached supplementary video
ayg new video model.mp4). We find that the full AYG model that samples different fps conditionings during score
distillation is overall preferred, although there is an outlier in the 3D appearance category. However, the varying fps condi-
tionings in AYG primarily aim at producing better motion and not at improving 3D quality, and for the motion categories
the main AYG model is generally preferred over the ablated version with only one fps = 4 value. Visually, in the attached
ablations video we observe slightly lower quality motion, in line with the results from the user study.

Full AYG v.s. video model with only fps 12. Here, we instead only use fps = 12, corresponding to videos with less
but smoother motion. We again see that the full AYG model is preferred over this ablated variant, this time in all categories
including the 3D ones. In the supplementary video we can see significantly reduced motion in the dynamic 4D scenes when
using this ablated AYG version.

Note that these observations are in line with Singer et al. [79], who also used an fps-conditioned video diffusion model
and different fps during score distillation. Sampling different fps during 4D optimization helps both them and our AYG to
produce better dynamic 4D scenes with higher-quality motion.

Full AYG v.s. w/o dynamic cameras. We can also observe the benefit of dynamic cameras. The full AYG model that
includes dynamic cameras is preferred in all categories over the ablated model that uses static cameras when rendering the
video frames given to the video diffusion model during score distillation in the 4D stage. In the supplementary video, we
see that the dynamic 4D sequences generated without dynamic cameras have less motion. This is also consistent with Singer
et al. [79], who also observed a similar benefit of dynamic cameras.

Full AYG v.s. w/o negative prompting. Finally, we also studied the effect of negative prompt guidance during the 4D
stage. Overall, the main model that includes negative prompting is preferred, although on “Motion Amount” the baseline
without the negative prompt guidance is preferred. In the attached video, we observe lower quality dynamics without negative
prompting.

Conclusions. Overall, our ablation studies show that all of AYG’s components are important for generating high quality
dynamic 4D scenes. On “Overall Quality”, the main AYG model wins in all ablations with large margins. This justifies
AYG’s design choices.

F.3. View-guidance Ablation Study

Our main ablation studies focused primarily on the 4D stage and we wanted to study the effects of the different components
when learning dynamic 4D scenes, which is the main novelty of our paper. Here, we show an additional ablation study
that analyzes the effect of view-guidance (Sec. 3.4), which we used only in AYG’s initial 3D stage. We performed a user
study using the same prompts and following the exact same protocol as in our other user studies for the other ablations (see
Appendix E.4). However, since view-guidance has only been used in the 3D stage, we only asked the users about overall
quality, 3D appearance and 3D text alignment of the static 3D scenes synthesized after the initial 3D stage. We showed the
users 3D objects generated with and without view guidance and asked them to compare and rate them. The results are shown
in Table 7. We see that AYG with or without view-guidance in its 3D stage performs approximately similar according to the
user ratings and there is no clear winner in any of the categories.

30

We nevertheless used view guidance in AYG, as we subjectively found in early experiments that it sometimes helped with
overall 3D appearance and led to a small reduction of the Janus-face problem. However, as the results of the user study here
demonstrate, view guidance is certainly not one of the crucial components of AYG that make or break synthesis. However,
to the best of our knowledge view guidance is a new idea and maybe it can find applications in future work.

G. Additional Qualitative Results—More AYG Samples
Here, we show additional generated dynamic 4D scene samples from AYG. We also refer the reader to our supplementary
video ayg text to 4d.mp4, which shows almost all of our dynamic 4D scene samples. We also share videos generated
by AYG’s newly trained latent video diffusion model for this work.

G.1. Text-to-4D Samples

In Figs. 10, 11 and 13, we show additional text-to-4D samples from AYG, similar to Fig. 6 in the main paper.

G.2. Autoregressively Extended and Looping Text-to-4D Synthesis

In Fig. 12, we show additional samples from AYG that are autoregressively extended to form longer sequences while changing
the text prompt and that return to the initial pose to enable looping animations (similar to Fig. 7 in the main paper). For the
first two rows (the assassin) in Fig. 12, we use the following sequence of text prompts: “Assassin with sword running fast,
portrait, game, unreal, 4K, HD.”, “Assassin walking, portrait, game, unreal, 4K, HD.” and “Assassin dancing, portrait, game,
unreal, 4K, HD.”. For the next two rows (the lion), we use the following sequence of text prompts: “A lion running fast.”, “A
lion is jumping.” and “A lion is eating.”.

For reference, we also provide the prompts used for Fig. 7 in the main paper. For the first two rows (the bulldog), we use
the following sequence of text prompts: “A bulldog is running fast.” and “A bulldog barking loudly”. For the next two rows
(the panda), we use the following sequence of text prompts: “A panda running.” and “A panda is boxing and punching.”.

G.3. More Comparisons to Make-A-Video3D

In Fig. 14, we show additional visual comparisons to MAV3D [79], similar to Fig. 8 in the main paper.

G.4. Videos Generated by AYG’s fps-conditioned Video Diffusion Model

In Figs. 15 to 17, we present videos generated by AYG’s latent video diffusion model, showing the effect of the fps con-
ditioning. We also refer to the attached supplementary video ayg new video model.mp4, which shows more samples.

31

“A cat singing.”

“Tesla trooper shooting lightning, scifi, game character.”

“Volcano eruption.”

V
ie

w
 1

V
ie

w
 2

V
ie

w
 1

V
ie

w
 2

V
ie

w
 1

V
ie

w
 2

time <latexit sha1_base64="hnLXyj98SyWJxboWlxO2Ayd1ueI=">AAAB63icbVBNS8NAEJ3Ur1q/qh69BIvgqSTi17HoxWMFawttKJvtpl26uwm7E6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvTAQ36HnfTmlldW19o7xZ2dre2d2r7h88mjjVlLVoLGLdCYlhgivWQo6CdRLNiAwFa4fj29xvPzFteKwecJKwQJKh4hGnBHOphyTtV2te3ZvBXSZ+QWpQoNmvfvUGMU0lU0gFMabrewkGGdHIqWDTSi81LCF0TIasa6kikpkgm906dU+sMnCjWNtS6M7U3xMZkcZMZGg7JcGRWfRy8T+vm2J0HWRcJSkyReeLolS4GLv54+6Aa0ZRTCwhVHN7q0tHRBOKNp6KDcFffHmZPJ7V/cv6xf15rXFTxFGGIziGU/DhChpwB01oAYURPMMrvDnSeXHenY95a8kpZg7hD5zPHyRtjlI=</latexit>⌧

Figure 10. Text-to-4D synthesis with AYG. Various samples shown in two views each. Dotted lines denote deformation field dynamics
(also see supplementary video ayg text to 4d.mp4, where the dynamics are much better visible).

32

“Poseidon holding his trident emerging from the sea.”

“A knight in shining armor holding a sword and shield fighting.”

“A panda surfing a wave, best quality, 4K, HD.”

time <latexit sha1_base64="hnLXyj98SyWJxboWlxO2Ayd1ueI=">AAAB63icbVBNS8NAEJ3Ur1q/qh69BIvgqSTi17HoxWMFawttKJvtpl26uwm7E6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvTAQ36HnfTmlldW19o7xZ2dre2d2r7h88mjjVlLVoLGLdCYlhgivWQo6CdRLNiAwFa4fj29xvPzFteKwecJKwQJKh4hGnBHOphyTtV2te3ZvBXSZ+QWpQoNmvfvUGMU0lU0gFMabrewkGGdHIqWDTSi81LCF0TIasa6kikpkgm906dU+sMnCjWNtS6M7U3xMZkcZMZGg7JcGRWfRy8T+vm2J0HWRcJSkyReeLolS4GLv54+6Aa0ZRTCwhVHN7q0tHRBOKNp6KDcFffHmZPJ7V/cv6xf15rXFTxFGGIziGU/DhChpwB01oAYURPMMrvDnSeXHenY95a8kpZg7hD5zPHyRtjlI=</latexit>⌧
V

ie
w

 1
V

ie
w

 2
V

ie
w

 1
V

ie
w

 2
V

ie
w

 1
V

ie
w

 2

Figure 11. Text-to-4D synthesis with AYG. Various samples shown in two views each. Dotted lines denote deformation field dynamics
(also see supplementary video ayg text to 4d.mp4, where the dynamics are much better visible).

33

3

Vi
ew

 2

Initial pose WalkingRunning Initial pose

Vi
ew

 1
Vi

ew
 2

Vi
ew

 1

Dancing

Initial pose JumpingRunning Initial poseEating

Figure 12. Autoregressively extended text-to-4D synthesis. AYG is able to autoregressively extend dynamic 4D sequences, com-
bine sequences with different text-guidance, and create looping animations, returning to the initial pose (also see supplementary video
ayg text to 4d.mp4, where the different actions are much better visible).

34

time <latexit sha1_base64="hnLXyj98SyWJxboWlxO2Ayd1ueI=">AAAB63icbVBNS8NAEJ3Ur1q/qh69BIvgqSTi17HoxWMFawttKJvtpl26uwm7E6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvTAQ36HnfTmlldW19o7xZ2dre2d2r7h88mjjVlLVoLGLdCYlhgivWQo6CdRLNiAwFa4fj29xvPzFteKwecJKwQJKh4hGnBHOphyTtV2te3ZvBXSZ+QWpQoNmvfvUGMU0lU0gFMabrewkGGdHIqWDTSi81LCF0TIasa6kikpkgm906dU+sMnCjWNtS6M7U3xMZkcZMZGg7JcGRWfRy8T+vm2J0HWRcJSkyReeLolS4GLv54+6Aa0ZRTCwhVHN7q0tHRBOKNp6KDcFffHmZPJ7V/cv6xf15rXFTxFGGIziGU/DhChpwB01oAYURPMMrvDnSeXHenY95a8kpZg7hD5zPHyRtjlI=</latexit>⌧

“A panda reading a book.”

“A bee fluttering its wings fast.”

V
ie

w
 1

V
ie

w
 2

“A purple unicorn flying.”

“An astronaut riding a horse.”

V
ie

w
 1

V
ie

w
 2

V
ie

w
 1

V
ie

w
 2

V
ie

w
 1

V
ie

w
 2

Figure 13. Text-to-4D synthesis with AYG. Various samples shown in two views each. Dotted lines denote deformation field dynamics
(also see supplementary video ayg text to 4d.mp4, where the dynamics are much better visible).

35

Figure 14. AYG (ours) vs. MAV3D [79]. We show four 4D frames for different times and camera angles (also see supplementary video
ayg text to 4d.mp4, where we also show comparisons to MAV3D and where the dynamics are much better visible).

36

fps = 4 fps = 12

tim
e

Figure 15. Two video samples from AYG’s newly trained latent text-to-video diffusion model for the same text prompt “A corgi
running.” but with different fps conditionings fps = 4 and fps = 12. We see that, as expected, conditioning on the lower fps value
generates a video with more motion for the same 4 frames (the model synthesizes 16 frames and we show the 1st, the 6th, the 11th, and the
16th frame). Conditioning on the higher fps value results in a video with less motion but good temporal consistency.

37

fps = 4 fps = 12

tim
e

Figure 16. Two video samples from AYG’s newly trained latent text-to-video diffusion model for the same text prompt “Assassin with
sword running fast, portrait, game, unreal, 4K, HD.” but with different fps conditionings fps = 4 and fps = 12. We see that, as expected,
conditioning on the lower fps value generates a video with more motion for the same 4 frames (the model synthesizes 16 frames and we
show the 1st, the 6th, the 11th, and the 16th frame). Conditioning on the higher fps value results in a video with less motion but good
temporal consistency.

38

fps = 4 fps = 12

tim
e

Figure 17. Two video samples from AYG’s newly trained latent text-to-video diffusion model for the same text prompt “A turtle
swimming.” but with different fps conditionings fps = 4 and fps = 12. We see that, as expected, conditioning on the lower fps value
generates a video with more motion for the same 4 frames (the model synthesizes 16 frames and we show the 1st, the 6th, the 11th, and the
16th frame). Conditioning on the higher fps value results in a video with less motion but good temporal consistency.

39

	. Introduction
	. Background
	. Related Work

	. Align Your Gaussians
	. AYG's 4D Representation
	. Text-to-4D as Compositional Generation
	. AYG's Score Distillation in Practice
	. Scaling Align Your Gaussians

	. Experiments
	. Conclusions
	References
	. Supplementary Videos
	. Related Work—Extended Version
	. Details of Align Your Gaussians' 4D Representation and Optimization
	. 3D Representation
	. Deformation Field
	. Frames-Per-Second (fps) Sampling
	. Rigidity Regularization
	. JSD-based Regularization of the Evolving Distribution of the Dynamic 3D Gaussians
	. Camera Distribution
	. Diffusion Models
	. Rendering Resolution
	. Additional Fine-tuning and Optimization

	. Align Your Gaussian's Synthesis Framework
	. AYG's Compositional Generation Framework
	. AYG's Score Distillation Scheme
	. AYG's Parameter Gradients—Putting it All Together

	. Experiment Details
	. Video Diffusion Model Training
	. Text-to-4D Hyperparameters
	. Evaluation Prompts
	. User Study Details

	. Additional Quantitative Results
	. Comparisons to MAV3D and R-Precision Evaluation
	. Extended Discussion of Ablation Studies
	. View-guidance Ablation Study

	. Additional Qualitative Results—More AYG Samples
	. Text-to-4D Samples
	. Autoregressively Extended and Looping Text-to-4D Synthesis
	. More Comparisons to Make-A-Video3D
	. Videos Generated by AYG's fps-conditioned Video Diffusion Model

