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Supplementary Material

1. Overview
Sec. 2 discusses the data acquisition standard and the
DL3DV-10K data distribution. Sec. 3 discusses more de-
tails of our benchmark experiments, including experiment,
training details and more qualitative results, and details of
the generalizable NeRF experiment.

2. Data
2.1. Data acquisition

The scene coverage for video shooting is illustrated in
Fig. 2. For real-world scenes, they encompass horizontal
views (180◦ - 360◦) from different heights. We capture
scenes using 360◦ panoramic views when the scene is ac-
cessible and well-defined, typically encompassing a diam-
eter that can be covered on foot within 30 to 45 secs. In
instances where the rear view of the scene is obstructed by
larger objects, such as larger buildings, we opt for a semi-
circular view (exceeding 180◦) to capture the scene. To en-
hance scene coverage, we record videos by traversing two
circular or semi-circular paths. The first traversal is con-
ducted at overhead height, while the second is performed
at approximately waist height. In data process, we apply
COLMAP to calculate the camera pose for frames in the
scene. Camera pose data would be released along with RGB
images.

2.2. Benchmark selection

We select 140 scene as NVS benchmark by balancing scene
complexity indices. Scene complexity is categorized into
16 types based on bounded (indoor) vs. unbounded (out-
door) environment, high vs. low texture frequency (low- vs.
high-freq), more vs. less reflection (more- vs. less-ref ), and
more vs. less transparency (more- vs. less-transp). Rarer
combinations like outdoor scenes with low-freq, more-ref,
and more-transp, or outdoor scenes with low-freq, less-ref,
and more-transp features are ignored. Therefore, a uniform
distribution across the other 14 scene complexity types is
selected. From each, 10 samples are chosen from various
POIs to ensure statistical representativeness.

2.3. Labeling

Reflection and transparency We manually annotate re-
flection and transparency indices to scenes by assessing the
ratio of reflective (transparent) pixels and the duration of
reflectivity (transparency) observed in the video. Fig. 1
presents the reflection labeling criteria. Transparency la-
beling follows the same rule.

Figure 1. Reflection labeling criteria. Transparency annotation
likewise.

2.4. Data Statistics

Scene summary by secondary POI category. The sec-
ondary POI categories are detailed classes within the pri-
mary POI categories. Fig. 3 shows scene statistics for each
secondary POI category and the corresponding primary POI
category. Fig. 4 presents scene statistics for each secondary
POI category by complexity indices such as environmental
setting, light condition, and level of reflection and trans-
parency. For example, in the ’light condition’ attribute,
we find that scenes from ’supermarkets’, ’shopping-malls,
and ’furniture-stores’ are mostly under artificial lighting,
whereas ’hiking-trails and ’parks-and-recreation-areas’ are
under natural light. As for ’reflection’ and ’transparency’
attributes, ’shopping-malls’ are more likely to feature fully
reflective scenes than other locations, while nature & out-
door scenes such as ’hiking-trails’ are predominantly non-
reflective scenes. Most scenes are non-transparent. These
observations align well with common expectations in real-
world scenarios.
Frequency and duration estimates. The kernel density
distribution of frequency metric and video duration can be
found in Fig. 5. The frequency classes are delineated based
on the median value of the frequency metric.

3. Experiment
3.1. NVS benchmark

Experiment Details The implementation of Nerfacto and
Instant-NGP is from nerfstudio [8]. MipNeRF360 [1] and
3D gaussian splatting (3DGS) [3] codes are from the au-
thors. ZipNeRF [2] source code is not public yet when we



Figure 2. Video shooting examples with different heights and angles.
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Figure 3. Number of scenes within secondary POI category. The legend contains the mapping between the primary and secondary POI
categories. We observe that ’schools-universities and ’residential-area’ are the predominant scenes in our DL3DV-10K dataset. In contrast,
locations such as government and civic service facilities (e.g., ’post office, ’police station, ’court house, and ’city hall) are less frequently
captured due to the challenges in accessing these areas for detailed video recording.



submit the paper. We used a public implementation [7] that
shows the same performance results reported in the paper to
test ZipNeRF.

The default ray batch is 4096. ZipNeRF is sensitive
to this parameter, and we also showed 65536 (default by
ZipNeRF) results. Nerfacto, Instant-NGP, ZipNeRF used
half-precision fp16 while 3DGS and MipNeRF360 use full
precision. All the NeRF-based methods use the same near
(0.01) and the same far (1e5). The codes are run on A30,
V100 and A100 GPUs depending on the memory they used.
All the experiments took about 13,230 GPU hrs to finish.
More quantitative results. We present the performance
of State-of-the-art (SOTAs) in DL3DV-140 by scene pri-
mary POI categories in Fig. 6.
More visual results. We present more visual results for
the performance of SOTAs on DL3DV-140 by scene com-
plexity indices. In particular, Fig. 7 describes the perfor-
mance of SOTAs by environmental setting; Fig. 8 describes
the performance of SOTAs by frequency; Fig. 9 describes
the performance of SOTAs by transparency; and Fig. 11 de-
scribes the performance of SOTAs by reflection.

3.2. Generalizable NeRF

Experiment details We follow the default setting by IBR-
Net [9]. The training dataset includes LLFF [4], spaces,
RealEstate10K [11] and self-collected small dataset by
IBRNet authors. The evaluation dataset includes Diffuse
Synthetic 360◦ [6], Realistic Synthetic 360◦ [5], part of
LLFF that was not used in training. We used the official im-
plementation. Each experiment was trained on single A100
GPU. Pretaining on Scannet++ and DL3DV-10K took 24
hrs. We present the sample of visual results for IBRNet ex-
periment on Fig 10.

Besides, we report the additional IBRNet experiment of
using Realistic Synthetic datase to evalcuate the potential of
DL3DV-10K. The results can be found in Tab 1.

Realistic Synthetic 360◦ [5]
Method PSNR↑ SSIM↑ LPIPS↓
IBRNet 23.95 0.906 0.101
IBRNet-S 23.57 0.905 0.101
IBRNet-270 24.55 0.911 0.097
IBRNet-1K 23.58 0.906 0.102
IBRNet-2K 24.98 0.913 0.095

Table 1. IBRNet is trained from scratch, IBRNet-S, IBRNet-270,
IBRNet-1K, and IBRNet-2K are IBRNet pred-trained on Scen-
Net++(270), DL3DV-270, DL3DV-1K, and DL3DV-2K.
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Figure 4. We show the distribution of scenes captured in secondary POI categories by complexities, including environmental setting, light
conditions, reflective surfaces, and transparent materials.
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Figure 5. We show the distribution of video duration and frequency metric in 10,510 videos. The minimum duration for video shooting
with consumer mobile devices is set at 60 secs, while for drone cameras, it’s at least 45 secs. In our dataset, the median video duration is
69.5 secs. Furthermore, the median value of the frequency metric, determined by the average image intensity, stands at 2.6e-06. Based on
this median value, we categorize scenes into high frequency (’high freq’) and low frequency (’low freq’) classes.
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Figure 6. We present the average performance on 6 primary POI categories (Education institutions, Nature & Outdoors, Restaurants and
Cafes, Shopping Centers, Tourist Attractions, and Transportation Hubs) in the DL3DV-140. The text above the bar plot is the mean value of
the methods on the primary POI categories. As shown in the figure, NVS methods have better performance on scenes captured in Education
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majority scenes in Education institutions, Restaurants and Cafes, and Shopping Centers are indoor scenes. Additionally, the performance
on Shopping Centers is worse than Education institutions and Restaurants and Cafes.
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Figure 7. We compare the SOTAs for indoor (bounded) and outdoor (unbounded) environments on DL3DV-140 from held-out test views.
As illustrated in the figure, indoor scenes pose fewer challenges compared to outdoor scenes, where SOTAs demonstrate varying levels
of performance. We observe that outdoor scene is more challenging for 3D Gaussian Splatting (3DGS), Nerfacto, and Instant-NGP than
Zip-NeRF and Mip-NeRF 360.



Figure 8. We compare the performance of SOTAs in frequency (low freq vs. high freq) on DL3DV-140 from held-out test views. As
shown in the figure, high frequency (high freq) scene is more challenging than low frequency (low freq) scene. We observe that 3DGS
consistently captures scenes with high-frequent details and renders the shape edge for the scene details. As for NeRF variants, it is more
challenging for Nerfacto and Instant-NGP to handle scenes with high-frequent details than Zip-NeRF and Mip-NeRF 360. Besides, NeRF
variants suffer aliasing issues.



Figure 9. We compare the performance of SOTAs for transparency classes (less transp vs. more transp) on DL3DV-140 from held-
out test views. As shown in the figure, scenes with more transparent materials (more transp) are more challenging than scenes with less
transparent materials (less transp). In our analysis of the selected scenes, we noted that 3DGS, Zip-NeRF, and Mip-NeRF 360 effectively
capture the subtle edges of transparent objects. Conversely, Nerfacto and Instant-NGP tend to consistently generate artifacts.

IBRNet IBRNet-S IBRNet-D GT

Figure 10. More qualitative results for generalizable NeRF. IBRNet-S: pretrain IBRNet on Scannet++ [10]. IBRNet-D: pretrain IBRNet
on DL3DV-2K. Priors learned from DL3DV-2K help IBRNet perform the best on the evaluation.



Figure 11. We compare the SOTAs for reflection classes (less ref vs. more ref ) on DL3DV-140 from held-out test views. As shown in
the figure, scenes with more reflective surfaces (more ref ) are more challenging than scenes with less reflective surfaces (less ref ). Among
SOTAs, Zip-NeRF and Mip-NeRF 360 are adept at capturing subtle reflections and highlights. On the other hand, 3DGS tends to overly
smooth out less intense reflections. Nerfacto and Instant-NGP struggle to effectively manage scenes with highly reflective surfaces, often
resulting in the generation of artifacts.
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