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A. Gradient Computation for the SED Solver
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Let ā be the anchor location in homogenous coordinates. The partials for l w.r.t. F are
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The partials for the fundamental matrix w.r.t. the essential matrix, given the known calibration matrix K:
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The 3⇥ 3 essential matrix in terms of the input rotation R and translation t, and the local updates ⇠R and ⇠t, is

E = (e⇠RR)>[e⇠tt]⇥ (19)

The derivatives of ⇠R and ⇠t are taken at the identity, so they are equal to 0 when treated as a constant. To compute the
partial of this essential matrix w.r.t. ⇠R at 0:
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Similarly, the partial w.r.t. ⇠t at 0:
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Putting it together with the chain rule:
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B. Extracting Rotation and Translation from the Essential Matrix
To obtain the relative pose given the essential matrix E, we follow the procedure prescribed in [13].
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t = UZU> (29) R1 = UWV > (30) R2 = UW>V > (31)

The four plausible solutions are
[(t, R1), (t, R2), (�t, R1), (�t, R2)] (32)

During training, we choose the solution closest to the ground-truth. During inference, we choose the pose which triangulates
the most points in front of the camera.

C. Architecture Details
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Figure 11. The architecture of our context and correlation feature extractors. Both feature extractors are residual networks. The context
feature extractor also uses ReLU self-attention to propagate information across the image. The correlation features are used to evaluate
visual similarity at multiple spatial resolutions. The numbers in parenthesis are the output feature dimensions.
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Figure 12. The gated residual unit.

MLP-GRU We depict the gated residual unit in Fig. 12. This is the same design from DPVO [45].
Feature Extractors We visualize the feature extractors in Fig. 11. The correlation features are produced at 1/2, 1/4 and 1/8
the image resolution. The context features are extracted only at 1/8 resolution, and have additional self-attention layers to
propagate information over the image.



D. Additional Qualitative Results
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Figure 13. Additional Qualitative results on Scannet.
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