Multi-Session SLAM with Differentiable Wide-Baseline Pose Optimization
Supplementary Material

A. Gradient Computation for the SED Solver
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Let a be the anchor location in homogenous coordinates. The partials for [ w.r.t. F are
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The partials for the fundamental matrix w.r.t. the essential matrix, given the known calibration matrix K:
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The 3 x 3 essential matrix in terms of the input rotation R and translation t, and the local updates (g and &, is
E = (e*®R) " [e*t] (19)

The derivatives of £ég and & are taken at the identity, so they are equal to O when treated as a constant. To compute the
partial of this essential matrix w.r.t. £g at 0:
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Similarly, the partial w.r.t. & at 0:
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Putting it together with the chain rule:
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B. Extracting Rotation and Translation from the Essential Matrix

To obtain the relative pose given the essential matrix E, we follow the procedure prescribed in [13].
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The four plausible solutions are
[(t7 Rl)? (tv R2)7 (_tv Rl)? (_tv RQH (32)

During training, we choose the solution closest to the ground-truth. During inference, we choose the pose which triangulates
the most points in front of the camera.

C. Architecture Details
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Figure 11. The architecture of our context and correlation feature extractors. Both feature extractors are residual networks. The context
feature extractor also uses ReLU self-attention to propagate information across the image. The correlation features are used to evaluate
visual similarity at multiple spatial resolutions. The numbers in parenthesis are the output feature dimensions.
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Figure 12. The gated residual unit.

MLP-GRU We depict the gated residual unit in Fig. 12. This is the same design from DPVO [45].

Feature Extractors We visualize the feature extractors in Fig. 11. The correlation features are produced at 1/2, 1/4 and 1/8

the image resolution. The context features are extracted only at /s resolution, and have additional self-attention layers to
propagate information over the image.



D. Additional Qualitative Results
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Figure 13. Additional Qualitative results on Scannet.
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