
CAGE: Controllable Articulation GEneration

Supplementary Material

In this supplement to the main paper, we provide imple-
mentation details (Section 1) and additional qualitative and
quantitative results (Section 2). We also include a supple-
mental video to provide a quick introduction to our work.

1. Implementation Details

1.1. CAGE Training Details

We randomly permute the ordering of the nodes in graphs
during training so that our model does not learn to rely on
specific node orderings. This makes our model robust to
graph isomorphic permutations at inference time. For pa-
rameterization, we normalize all the part attributes in the
range of [−1, 1] to feed into the diffusion model.

Our diffusion model follows the standard scheme pro-
posed in DDPM [1]. In the forward process, we use a lin-
ear beta scheduler that maps a sequence of betas ranging
from 1e − 4 to 0.02 with a total of 1, 000 diffusion steps.
Each training iteration consists of 64 objects and each ob-
ject is trained with 10 randomly sampled timesteps. We set
an initial learning rate of 5e − 4. To schedule the learn-
ing rate, we use a warm-up strategy for 20 epochs and then
decay from the initial learning rate to 0 by following the co-
sine function. During inference, we set 100 denoising steps
for generating each sample. We train the diffusion model
for 5, 000 epochs in total on a single NVIDIA A40 GPU
for 13.94 hours. We show a quantitative comparison of the
training time with other baselines in Table 1.

K = 8, articulation graph K = 32, action graph

NAP [2] NAP-light Ours-light NAP-large Ours

Training time (hrs) 6.05 1.76 2.74 22.87 13.94

Table 1. Training time comparison with baselines and variations
under two experiment settings using 32-bit float precision. Setting
1: for models with K = 8, the shapecode formulation in the NAP
model accounts for the majority of the computational overhead, as
evidenced by the comparison with the NAP-light variant which re-
places this component with a lighter part type attribute. The com-
parable variant of method (Ours-light) incurs a marginally higher
computation time than NAP-light, while providing significantly
better outputs as described in the main paper. Setting 2: in scenar-
ios where the methods are extended to more parts (K = 32), the
computational overhead for the NAP-large model escalates sig-
nificantly whereas our method’s training time remains compara-
tively lower. These results demonstrate the improved computa-
tional scalability of our approach relative to NAP, which is impor-
tant for complex objects with larger numbers of distinct parts.

1.2. Part Retrieval Implementation

Given a generated articulated object abstract specification,
we use a two-step approach to retrieve suitable parts and
build the final articulated 3D object. We pick the base part
in step 1 and the remaining parts in step 2.
Step 1: base part retrieval. We compute a Weisfeiler-
Lehman graph hash [3] from the generated object kinematic
tree. This hash is identical for isomorphic graphs. Since the
base part (i.e. stationary part of the object) should be com-
patible with the generated object part motions, we anticipate
that the best–matching object candidates will have the same
kinematic tree topology. Hence, only candidates with the
same hash (and object category, if specified in the input)
from the training set are selected for further consideration.
In cases where no candidates have the same hash (which
happens when the object is out of distribution), we consider
all candidates in the training set. We then compute the AID
metric for each selected candidate and pick the base part
from the candidate with best metric value. In addition, we
keep the top five candidates for the next step.
Step 2: articulated part retrieval. For the remaining parts
other than the base, we pick a single candidate part for each
semantic part in the generated object (e.g., one drawer part
for a storage with three drawers). The selected part is du-
plicated and resized to fill the part bounding box in the gen-
erated object abstract specification. We start with parts in
the top five object candidates in step 1 and choose a part if
it has the same semantic label as any of the required parts.
If there are still unretrieved parts, we consider other can-
didates from the same category (if specified) or the whole
training set.

The above procedure is designed to maximize style con-
sistency between the retrieved parts, and create coherent ob-
jects. The full 3D mesh visualizations in the main paper and
in this supplement demonstrate the results obtained using
this approach.

1.3. Metrics

Here we provide implementation details for the two dis-
tances used in our evaluation metrics.
Instantiation Distance (ID). We simplify the ID metric
first proposed by NAP [2] to consider pairwise Chamfer-
L1 distance between two objects in temporally synchro-
nized articulation states. Specifically, we randomly sam-
ple 2,048 point samples per part per object and compute
their Chamfer distance in five evenly spaced-out articula-
tion states within the joint ranges of the objects. We take
the average of the five distances to be the final ID value.



Abstract Instantiation Distance (AID). We also introduce
AID to measure the distance between two objects with vol-
umetric IoU (vIoU) on the part bounding boxes. Given two
objects, we first scale both objects such that their overall
bounding boxes are the same size. We then assign part
correspondences between the two objects based on the part
bounding box center distances. For each part pair, we com-
pute a sampling-based vIoU (using 10, 000 point samples
per bounding box) in five evenly spaced-out articulation
states within the joint ranges of the objects. Finally, we take
the average of the vIoUs over all states and parts and com-
pute the complement (1− vIoUavg) as the final AID value.

2. Additional Results
Graph conditional generation. Figure 1 shows 18 ran-
domly generated samples (with no manual selection) from
our method CAGE, and the baseline NAP-large adapted
from Lei et al. [2]. Both are conditioned on medium-
complexity object graphs. The results are the first 18 results
generated from each method. The output objects generated
using our method are consistently compatible with the in-
put graph and achieve overall high fidelity. In comparison,
the objects generated using NAP often fail to conform to
the graph constraint with flipped edge connections, denoted
in red arrows. Moreover, many of the objects generated us-
ing NAP are unrealistic, with incorrect articulation axes and
significant part-part misorientations and collisions.
Part→Motion. Figure 2 shows two sets of randomly gen-
erated samples (with no manual selection) from our method
and NAP-large that are conditioned on part shape attributes.
The generated motion using our method is stable and con-
sistently compatible with the input part shape (e.g. in the
microwave example, the handle on the right of the door in-
dicates that the door is more likely to be opened from the
right). The second example is a more challenging case with
more parts to be coordinated. Here, we observe a few failure
cases with implausible articulations in our results (columns
3 and 5 from the left). In comparison, a large proportion of
the results from NAP exhibit implausible motions.

References
[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-

fusion probabilistic models. NeurIPS, 33:6840–6851, 2020.
1

[2] Jiahui Lei, Congyue Deng, Bokui Shen, Leonidas Guibas,
and Kostas Daniilidis. NAP: Neural 3D Articulation Prior.
NeurIPS, 2023. 1, 2

[3] Nino Shervashidze, Pascal Schweitzer, Erik Jan
Van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine
Learning Research, 12(9), 2011. 1



NAP: Random Generation

Ours: Random Generation

Figure 1. Graph conditional generation: we show 18 randomly generated samples (without manual selection) produced with our method
(top) and NAP-large (bottom). Summary: Our results are consistently compatible with the input graph and achieve overall high fidelity. In
comparison, the results from NAP often fail to conform to the graph constraint with many flipped edge connections denoted by red arrows
in the output part hierarchy graph. Moreover, many objects generated with NAP-large exhibit unrealistic part-part overlaps and incorrectly
oriented motion axes. Setup: The results from ours and NAP-large are both conditioned on a medium-complexity object articulation graph
identical to the graph shown in the top-left entry. The results are selected from the first 18 results generated from each model. For every
set of five columns, the first column shows the node hierarchy of the generated parts. The second and third columns depict the object in
its resting state in abstract and complete mesh form. Columns four and five represent the object in a fully open state, again in abstract and
mesh form.



NAP: 10 Random Results

Ours: 10 Random Results

NAP: 10 Random Results

Ours: 10 Random Results

Figure 2. Part → Motion: randomly generated samples (with no manual picking) from our method and NAP-large for two example inputs
shown at the top. Summary: our generated motions are stable and consistently compatible with the input part shape (e.g. in the microwave
example, the handle on the right of the door indicates that the door is more likely to be opened from the right). The second example is more
challenging with more parts to be coordinated. As expected, we observe some failure cases in our results, with implausible articulation
motions (see outputs in the sets at column 3 and column 5, from the left). In this more challenging case, NAP by comparison produces
implausible motions in a much larger proportion of the generated results with almost all generated objects exhibiting part collisions or
unrealistic motion axes. Setup: Every set of two columns shows a generated object, with the first column showing the abstract bounding
box form with joint axes and the second column showing the final retrieved part meshes, both in the fully open state.


	. Implementation Details
	. CAGE Training Details
	. Part Retrieval Implementation
	. Metrics

	. Additional Results

