
CDFormer: When Degradation Prediction Embraces Diffusion Model for Blind
Image Super-Resolution

Supplementary Material

6. Preliminaries
Diffusion Models (DMs) rely on a long Markov chain of
diffusion steps to generate samples. They first define a for-
ward diffusion process that transforms the input image x0

to Gaussian noise xT ∼ N (0, 1) over T iterations. Each it-
eration in the forward process can be described as follows:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (14)

where xt is the noised image at time-step t, βt is the pre-
defined scale factor. Using a reparameterization trick, the
above equation can be simplified as:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (15)

where αt = 1− βt, ᾱt =
∏t

i=0 αi.
The reverse diffusion process is then defined to recreate

a sample from p(xt−1 | xt) as follows:

p(xt−1|xt, x0) = N (xt−1;µt(xt, x0), σ
2
t I), (16)

where µt(xt, x0) =
1√
αt
(xt−ϵ 1−αt√

1−ᾱt
), σ2

t = 1−ᾱt−1

1−ᾱt
βt. ϵ,

the added noise in the forward process to xt, however, is un-
known in the reverse process. Thus unconditional DMs are
trained to predict noise ϵ for each step, denoted as ϵθ(xt, t).

Simply, Eq. (16) can be rewritten as:

xt−1 =
1

√
αt

(xt−
1− αt√
1− ᾱt

ϵθ(xt, t))+
√
1− αtϵt, (17)

where ϵt ∼ N (0, I) is the added noise at step t.
The training of DMs uses the variational lower bound to

optimize the negative log-likelihood:

∇θ||ϵ− ϵθ(
√
ᾱtx0 + ϵ

√
1− ᾱt, t)||22. (18)

where θ is the parameters of the network.

7. Algorithm
We provide the training and inference algorithms of
CDFormerstage2 in Algorithm 1 and Algorithm 2, respec-
tively. Notice that during training ẐT is computed from Z0,
which is predicted by EGT , while ẐT during inference is
sampled from Gaussian noise.

8. Discussion
Our research has revealed an inherent drawback in the appli-
cation of diffusion models (either in the pixel space or latent

Algorithm 1 CDFormerstage2 Training
Input: Trained CDFormerstage1 (including EGT and
CDFormerSR), timesteps T , schedule βt, αt (t ∈ [1, T]),
ILR, IHR.
Output: Trained CDFormerstage2.

1: Init: Forzen EGT .
2: for ILR, IHR do
3: Z0 = EGT (Concat((IHR) ↓s, ILR), IHR).
4: Forward Process:
5: Sample ZT by q(ZT |Z0) = N (ZT ;

√
ᾱTZ0, (1 −

ᾱT)I)
6: Reverse Process:
7: ẐT = ZT

8: c = ELR(ILR)
9: for t = T to 1 do

10: Ẑt−1 =
1

√
αt

(Ẑt − 1− αt√
1− ᾱt

ϵθ(Ẑt, t, c))) +
√
1− αtϵt

11: end for
12: ISR = CDFormerSR(ILR, Ẑ0)
13: Calculate Ldiff and Lrec
14: end for
15: Output the trained model CDFormerstage2.

Algorithm 2 CDFormerstage2 Inference
Input: Trained CDFormerstage2 (including ELR and
CDFormerSR), timesteps T , schedule βt, αt (t ∈ [1, T]),
ILR.
Output: Reconstructed SR images ISR.

1: Sample ẐT ∼ N (0, 1)
2: c = ELR(ILR)
3: for t = T to 1 do
4: Ẑt−1 =

1
√
αt

(Ẑt − 1− αt√
1− ᾱt

ϵθ(Ẑt, t, c))) +
√
1− αtϵt

5: end for
6: ISR = CDFormerSR(ILR, Ẑ0)
7: return Reconstruct SR images ISR.

space) for Blind image Super-Resolution (BSR): their gen-
erated SR images often exhibit inconsistencies with desired
content. We attribute this phenomenon to the designing goal
of diffusion models, i.e., DMs are essentially intended for

image synthesis rather than image reconstruction. This gen-
erative model type leads to an overemphasis on diversity,
which we assume to be counterproductive for BSR.

To be specific, when LR images of extremely low quality
are input, a scarcity of information can be utilized for re-
construction. In this case, applying diffusion models to re-
construct images will further exacerbate this scarcity, mak-
ing degradation estimation more difficult and leading to a
dominant role of randomness in the reverse process. This
explains why traditional deep learning methods can outper-
form diffusion-based SR approaches in widely used metrics
such as PSNR and SSIM. We instead propose a diffusion-
based estimator to predict high-level representation. The
conditional vector produced by LR images is able to prevent
excessive diversity. CDFormer therefore has the ability to
achieve a new state-of-the-art performance.

However, our experiments in more complex degradation
scenarios, as demonstrated in Tab. 3, revealed only modest
performance improvements. We suspect that in situations
where degradation reaches a certain level, both traditional
deep learning methods and our proposed CDFormer strug-
gle to reconstruct high-resolution images effectively. There-
fore, it may be helpful to allow for more diversity in the
diffusion process, which we have left as future work.

9. Experiment Settings
All experiments are conducted on GeForce RTX 4090 GPU.
The size of the Gaussian kernel is fixed to 21× 21. We first
train our method on noise-free degradation with isotropic
Gaussian kernels only. The ranges of the kernel widths σ
are set to [0.2, 2.0], [0.2, 3.0], and [0.2, 4.0] for ×2/3/4
SR, respectively. Then, our method is trained on more
general types of degradation with anisotropic Gaussian ker-
nels and noise. Anisotropic Gaussian kernels characterized
by a Gaussian probability density function N(0,

∑
) (with

zero mean and varying covariance matrix
∑

) are consid-
ered. The covariance matrix

∑
is determined by two ran-

dom eigenvalues λ1, λ2 ∼ U(0.2, 4) and a random rotation
angle Θ ∼ U(0, π). The noise level ranges from 0 to 25.

10. Additional Ablation Study
10.1. Effects of Iterations Number.

We performed an ablation study on iteration numbers in
our redesigned diffusion model. As plotted in Fig. 9, six
settings, T = {1, 2, 4, 8, 16, 32} respectively, have been
tested. The variance hyperparameters are varied as T
changes. The PSNR results indicate that a single iteration
step is insufficient to generate a meaningful prior repre-
sentation, thus limiting the Super-Resolution performance.
However, when increasing to 2 steps, CDFormer can reach
a fantastic result and the curve actually has converged. This
finding verifies that treating the diffusion process as a vector

estimator can address the problem of increased time cost in
large numbers of iterations T (1, 000 for example). Mean-
while, the dimension of the latent space C = 256 is small.
Therefore, the computational complexity is also reasonable.

Figure 9. PSNR (↑) results for different settings of iterations num-
ber, T = {1, 2, 4, 8, 16, 32} respectively.

Effects of Content-aware Degradation-driven Refine-
ment Block (CDRB). We also conduct an ablation study on
CDRB to validate the efficiency of CDFormerSR mod-
ule. As listed in Tab. 6, model5 adopted SwinIR as the SR
network, without any proposed module, is inferior to other
models. We gradually append the designed module from
model6 to model9, resulting in improvements in PSNR and
SSIM. Specifically, model6 demonstrates the advantages of
integrating spatial attention and channel attention, model9
proves the capacity of CDP and the injection manner.

The Fourier visualization in Fig. 10 further explains how
features are modified after depth-wise convolution, self-
attention, and fusion. It is obvious that depth-wise con-
volution focuses on low-frequency information while lack-
ing image edge details. In contrast, self-attention priori-
tizes high-frequency information but lacks structural infor-
mation. For example, the sewing of the hat is invisible in
Fig. 10a while clear in Fig. 10b, but the nose region rep-
resents an opposite phenomenon. By incorporating spatial
and channel interactions to fuse two types of feature maps,
the results in Fig. 10c exhibit an improved representation
with both high- and low-frequency information, indicating
the benefits of proposed intra- and inter-path aggregation
techniques.

11. More Visualization Results
11.1. Results of Local Attention Map.

To further demonstrate the effectiveness of CDFormer, we
utilize integral gradient analysis, LAM , to visualize the
pixel influence in Super-Resolution results. As shown in
Fig. 11, LAM maps (column 2) exhibit the importance of
each pixel in the input LR image w.r.t. the output SR image

Table 6. Ablation study of CDRB on Set5 for different kernel widths are shown. Best in blod.

Method GT CDP SW-SA CW-SA CDIM 0 1.2 2.4 3.6
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

model5 ✘ ✘ ✘ ✘ 31.843 0.8918 31.936 0.8907 31.692 0.8856 30.074 0.8493
model6 ✘ ✔ ✔ ✘ 32.114 0.8950 32.074 0.8922 32.006 0.8894 30.712 0.8646
model7 ✔ ✘ ✔ ✔ 32.344 0.8968 32.432 0.8968 32.268 0.8919 31.042 0.8681
model8 ✔ ✔ ✘ ✔ 32.413 0.8977 32.515 0.8980 32.335 0.8928 31.083 0.8685
model9 ✔ ✔ ✔ ✔ 32.485 0.8980 32.564 0.8981 32.393 0.8926 31.175 0.8688

(a) Depth-wise convolution (b) Self-attention

(c) Fusion

Figure 10. Visualization results for feature maps and Fourier plots

within the region marked with a red box. Compared to the
state-of-the-art degradation prediction (DP) method KDSR,
CDFormer presents a stronger relationship on both global
and local representations. The proposed CDP and adaptive
SR network ensure a better use of LR pixels, and can signif-
icantly enhance the quality of reconstruction results. Other
quantitative metrics as DI, PSNR, and SSIM, also indicate
that our method achieves remarkable superiority.

LR KDSR:DI
28.445

KDSR:PSNR/SSIM
25.68/0.855

HR CDFormer:DI
40.687

CDFormer:PSNR/SSIM
26.66/0.882

Figure 11. The result of LAM.

11.2. More Visualization Results.

We provide additional visual results in complicated degra-
dation scenarios involving Anisotropic Gaussian Kernels,
diverse noises, and real-world conditions in Fig. 12, as well

as general degradation scenarios involving Isotropic Gaus-
sian Kernels under noise-free degradation in Figs. 13 to 17.

LR in B100 with noise 10.

HR DASR

KDSR CDFormer LR in Set14 with noise 10.

HR DASR

KDSR CDFormer

LR in the real-world dataset.

DCLS DASR

KDSR CDFormer LR in the real-world dataset.

DCLS DASR

KDSR CDFormer

Figure 12. Visualization of different anisotropic Gaussian kernels and noises.

LR Img 73 in Urban100

GT
PSNR(↑)/SSIM(↑)

DASR
19.97/0.5494

KDSR
20.26/0.5820

DCLS
20.34/0.5863

StableSR
16.92/0.4142

Ours
21.61/0.6427

LR Img 92 in Urban100

GT
PSNR(↑)/SSIM(↑)

DASR
18.72/0.6407

KDSR
19.81/0.7066

DCLS
19.46/0.6777

StableSR
16.63/0.5832

Ours
20.09/0.7075

LR Img 12 in Urban100

GT
PSNR(↑)/SSIM(↑)

DASR
23.72/0.7251

KDSR
23.93/0.7394

DCLS
24.15/0.7499

StableSR
19.15/0.5966

Ours
24.64/0.7817

Figure 13. Visual results of Imgs in Urban100, for scale factor 4 and kernel width 0. Best marked in red.

LR Img 76 in Urban100

GT
PSNR(↑)/SSIM(↑)

DASR
22.61/0.7207

KDSR
24.21/0.7877

DCLS
23.84/0.7676

StableSR
19.66/0.6205

Ours
24.92/0.8119

LR Img 10 in Urban100

GT
PSNR(↑)/SSIM(↑)

DASR
26.91/0.8823

KDSR
27.14/0.8847

DCLS
27.46/0.8930

StableSR
23.06/0.8306

Ours
28.78/0.9123

LR Img 62 in Urban100

GT
PSNR(↑)/SSIM(↑)

DASR
21.15/0.7884

KDSR
22.51/0.8328

DCLS
21.70/0.8209

StableSR
18.15/0.6542

Ours
23.51/0.8762

Figure 14. Visual results of Imgs in Urban100, for scale factor 4 and kernel width 0. Best marked in red.

LR Img 57 in Urban100

GT
PSNR(↑)/SSIM(↑)

DASR
30.76/0.8941

KDSR
30.84/0.8979

DCLS
31.34/0.9035

StableSR
23.52/0.7447

Ours
32.68/0.9258

LR Img 58 in Urban100

GT
PSNR(↑)/SSIM(↑)

DASR
25.39/0.8491

KDSR
26.07/0.8610

DCLS
26.18/0.8627

StableSR
20.12/0.6958

Ours
27.41/0.8937

LR Img 93 in Urban100

GT
PSNR(↑)/SSIM(↑)

DASR
28.44/0.9251

KDSR
30.39/0.9372

DCLS
30.62/0.9382

StableSR
23.51/0.7976

Ours
32.28/0.9471

Figure 15. Visual results of Imgs in Urban100, for scale factor 4 and kernel width 0. Best marked in red.

LR Img 35 in Urban100

GT
PSNR(↑)/SSIM(↑)

DASR
26.69/0.8066

KDSR
25.93/0.8147

DCLS
28.02/0.8448

StableSR
19.46/0.6561

Ours
28.56/0.8583

LR Img 19 in Urban100

GT
PSNR(↑)/SSIM(↑)

DASR
20.63/0.7377

KDSR
20.62/0.7496

DCLS
21.86/0.7812

StableSR
16.21/0.5491

Ours
22.06/0.7990

LR Img 5 in Urban100

GT
PSNR(↑)/SSIM(↑)

DASR
25.71/0.9187

KDSR
26.21/0.9289

DCLS
27.27/0.9380

StableSR
20.33/0.7438

Ours
28.70/0.9550

Figure 16. Visual results of Imgs in Urban100, for scale factor 4 and kernel width 3.6. Best marked in red.

LR Img 93 in Urban100

GT
PSNR(↑)/SSIM(↑)

DASR
27.12/0.8956

KDSR
28.19/0.9078

DCLS
28.57/0.9140

StableSR
21.01/0.7567

Ours
29.41/0.9226

LR Img 53 in Urban100

GT
PSNR(↑)/SSIM(↑)

DASR
21.83/0.6797

KDSR
22.14/0.7048

DCLS
22.10/0.6981

StableSR
16.80/0.4696

Ours
22.39/0.7147

LR Img 61 in Urban100

GT
PSNR(↑)/SSIM(↑)

DASR
23.84/0.6942

KDSR
24.13/0.7158

DCLS
24.02/0.7079

StableSR
18.98/0.4849

Ours
24.60/0.7329

Figure 17. Visual results of Imgs in Urban100, for scale factor 4 and kernel width 3.6. Best marked in red.

