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The supplementary materials presented in this paper of-
fer a comprehensive quantitative and qualitative analysis
of the proposed method. In Appendix A.l, we present the
fine-grained experiment results of various methods on the
ImageNet-to-ImageNet-C CTTA task scenario. The addi-
tional ablation study is provided in Appendix A.2, encom-
passing experiments aimed at validating the effectiveness of
individual components on the ImageNet-to-ImageNet-C task.
Meanwhile, an exploratory experiment is conducted to assess
the sensitivity of the masking ratio in our proposed method.
We present additional qualitative visualization comparisons
on the Cityscapes-to-ACDC CTTA task in Appendix B. In
Appedix C, we furnish supplementary empirical observa-
tions and justifications supporting our motivation, including
detailed computational procedures and quantitative analyses.

A. Additional Quantitative Analysis
A.l. Fine-Grained Performance

In this section, we provide a fine-grained performance of
the classification results on the ImageNet-to-ImageNet-C
task presented in our submissions. As shown in Table 1,
our Adaptive Distribution Masked Autoencoders (ADMA)
archive the lowest classification error rate 42.5%, and at
the fine-grained level, demonstrate outstanding performance
across 13 out of the 15 corruption types, validating the ro-
bustness of our method in the continual adaptation process.

A.2. Additional Ablation Study

Components Effectiveness on ImageNet-to-ImageNet-C.
We conduct an additional experiment to evaluate each compo-
nent of our proposed method on the ImageNet-to-ImageNet-
C CTTA task. Consistent with our submission, we perform
four sets of ablation studies. As shown in Table 2, the first
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set of experiments (Ex1) is applying random masking strat-
egy to establish consistency constraints between the model
outputs generated from the masked target samples and those
from the original target samples. This obtains a 6.4% reduc-
tion in the error rate in contrast to the source method (Ex0).
Secondly, with the implementation of the Distribution-aware
Masking (DaM) mechanism, the error rate (Ex2) is further re-
duced to 47.9%, validating that DaM significantly enhances
the model’s ability to understand the target domain distri-
bution. The remaining two sets of experiments (Ex3 and
Ex4) are reconstructing the Histogram of Oriented Gradi-
ents (HOG) feature representations based on two masking
strategies. Random masking strategy with HOG reconstruc-
tion scheme (Ex3) achieves a 1.7% reduction in the error
rate compared to use random masking strategy individually
(Ex1). Our method (Ex4) outperforms others, showcasing
the best results, with a remarkable 12.2% reduction in error
rate compared to the source method. These results confirm
that incorporating HOG reconstruction into the continual
adaptation process aids the model in acquiring task-relevant
knowledge, particularly in the presence of domain shifts.

Masking Ratio Sensitivity. We conduct another set of ab-
lation experiments to investigate the sensitivity of our DaM
mechanism to the masking ratio. Given that the optimal
results are obtained when DaM is coupled with the recon-
structed HOG scheme, we specifically conduct these exper-
iments directly on the CIFAR10-to-CIFAR10C CTTA task
using our integrated method (DaM&HOG). The effect of the
masking ratio is shown in Figure 1, a wide range of mask
ratios from 30% to 80% produce different performances.
Clearly, the optimal result showcased in the submission is
achieved when the masking ratio is set at 50%. Remarkably,
within the vicinity of a 50% masking ratio, the error rate ex-
hibits minimal fluctuations, with the highest recorded error
rate being 14.0% at a 70% masking ratio. However, setting
the masking ratio to the extremes (i.e., 30% and 80%), yields
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Table 1. A fine-grained Classification error rate(%) for standard ImageNet-to-ImageNet-C online CTTA task. Mean(%) denotes the average
error rate across 15 target domains. Gain(%) represents the percentage of improvement in model accuracy compared with the source method.

‘ Random DaM HOG ‘ Meanl ‘ Gain
Ex0 - - - 55.8 /
Ex1 v - - 49.4 +6.4
Ex2 - v - 479 +7.9
Ex3 v - v 47.7 +8.1
Ex4 - v v 43.6 +12.2

Table 2. Average error rate(%) for ImageNet-to-ImageNet-C online
CTTA task. Random, DaM, and HOG represent the random mask-
ing strategy, our proposed Distribution-Aware Masking mechanism,
and our introduced HOG reconstruction, respectively.

intriguing results. The large masking ratio of 80% results
in a 2.9% deterioration in the error rate compared to the
best result, while the small masking ratio of 30% leads to a
more pronounced degradation of 10.5%. Hence, the results
suggest that DAM is not highly sensitive to the masking
ratio when it exceeds 30%, consistently yielding a relatively
robust adaptation process. At the same time, when the mask-
ing ratio is too large, such as 70% or 80%, the classification
error rate also experiences some increase. The reason is
that the mask covers a large portion of information, result-
ing in insufficient semantic information expression. Finally,
we chose a masking ratio of 50% for our classification and
segmentation CTTA experiments.

B. Additional Qualitative Analysis

To intuitively assess the effectiveness of our approach,
we conducted an additional set of qualitative experiments.
Specifically, we performed four sets of comparative exper-
iments in the Cityscapes-to-ACDC CTTA scenario. In the
first set of experiments, we tested the Segformer-B5 model
[12], pre-trained on the source domain Cityscapes dataset, di-
rectly on the four shifted domains of the ACDC dataset. Next,
we adapted the model, initially pre-trained on the source do-
main, to the target domains using the leading CTTA methods
TENT [10] and CoTTA [11] from recent years. The final
set of experiments involved applying our proposed method
for continual adaptation to the four target domains. The

25
23.1

N
o

15.5

iy
wn

14.0
13.0 12.6 12.9

Classification error rate
o

wn

30% 40% 50% 60% 70% 80%
Masking Ratio

Figure 1. Average error rate(%) for CIFAR10-to-CIFAR10C CTTA
task when applying different masking ratio(%).

results of the visualization of the segmentation maps for
all the methods are shown in Figure 2. The model apply-
ing our method has the best segmentation results for all the
target domains compared to the original source model, the
model applying the TENT method and the model applying
the CoTTA method. Notably. Our method archives consis-
tent improvements for most categories and the benefits in
categories like sidewalk, terrain, and traf fic sign are
very significant (shown in white box). Adapting to these
challenging categories is inherently difficult. Therefore, our
DaM mechanism strategically masks samples from these
categories that are more susceptible to domain shifts during
the testing process. Simultaneously, our model continues to
process inputs from the original images. By leveraging this
contextual knowledge for consistency constraints, coupled
with the HOG reconstruction scheme that enhances task-
relevant feature representation, the model achieves more
accurate segmentation of intricate regions.

C. Additional Discussion and Justification

In this section, our goal is to furnish detailed implementation
insights that substantiate our intuition. In Section C.1, we



Source Model TENT

II |

Rain

Snow

{
|

Ground Truth

Figure 2. Qualitative comparison of our method with previous SOTA methods on the ACDC dataset. Our method could better segment

different pixel-wise classes such as shown in the white box.

elucidate our choice of utilizing the Jensen—Shannon (JS)
divergence for computing inter-domain divergence. Addi-
tionally, we illustrate the trends of inter-domain divergence
in segmentation tasks. We extend the visualization of Class
Activation Mapping (CAM) in Section C.2.

C.1. Inter-Domain Divergence.

To substantiate the rationale behind our proposed DaM and
HOG reconstruction mechanism, we measure the distribu-
tion distances of feature representations across various target
domains. Inspired by previous works [5], we utilize the
domain distance definition proposed by Ben-David [2] and
employ the #-divergence metric to assess the domain rep-
resentations of our proposed method. The #-divergence

between Dg and Dr, can be calculated as:
dy(Dg,Dr,) =2 sup | Pr [D(z) =1]—
D~H *~Ds
Pr [D(z) = 1]|

z~Dr;

(D

, where ‘H denotes hypothetical space and D denotes dis-
criminator. Drawing inspiration from [1, 8, 9], we employ
the Jensen—Shannon (JS) divergence between two adjacent
domains as an approximation of 7{-divergence, as it has
proven effective in distinguishing domain representations.
When the inter-domain divergence is relatively small, it in-
dicates a consistent feature representation less affected by
cross-domain shifts [6].
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Figure 3. The inter-domain divergency. T to T represent the 4
target domains in ACDC, listed in sequential order.

Where Kullback-Leibler (K L) divergence between two
domain is

Pl (Ii)
P2($Z)

KL(Py||Py) = > Pi(x)log(
1=0

) 3

Utilizing P to represent the probability distribution of the
model output features, we partition the output feature space
into mutually disjoint intervals x;, where n denotes the total
number of samples in each target domain. As depicted in
Figure 4 of the main paper, our proposed method exhibits a
gradual reduction in inter-domain divergence.

Furthermore, we apply the same approach to calculate
inter-domain divergence in the segmentation CTTA task,
conducted on the Cityscapes-to-ACDC scenario. As depicted
in Figure 3, the DaM mechanism yields smaller inter-domain
divergence compared to the source model across all adjacent
domains. Our method further reduces the divergence on
all adjacent domains. The results demonstrate that DaM
excels in extracting target domain knowledge, while HOG
reconstruction increases stability in cross-domain learning
and mitigates the impact of domain shift erosion.

C.2. Class Activation Mapping (CAM)

To empirically validate our intuition, we extend the use of
CAM visualization to a larger set of samples within the
ImageNet-C dataset. As illustrated in Figure 4, the results
demonstrate a consistent trend with those presented in the
submission. Specifically, when employing only the source
model, the attention of the features appears scattered. This
dispersion is a consequence of the domain shift influence,
which hinders the model’s ability to focus on foreground
samples. In contrast, with the DaM mechanism, there is a
noticeable concentration of attention on foreground samples,
indicating that DaM assists the model in better understand-
ing the target domain knowledge. Our approach leverages
the domain-invariant property of HOG features. Through
HOG reconstruction, we further enhance the model’s task-
relevant feature representations, allowing the output features
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Figure 4. The CAM visualizations.

to disregard background domain shift and achieve higher
response values on the foreground samples.
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