
A. Correctness of the Particle Filtering Frame-
work

We now prove the correctness of our resampling weight de-
sign in the particle filtering algorithm. Denote the distribu-
tion that {x(k)

t } follows as v(Xt|C), based on the particle
filtering process, it is easy to show the probability satisfies
the following recursive relationship:

v(Xt|C) /
Z

v(Xt+1|C)r(Xt|Xt+1,C)w(Xt,Xt+1|C) dXt+1,
(14)

where r(Xt|Xt+1,C) is the proposal distribution and
w(Xt,Xt+1|C) is the resampling weight.

Now consider r(Xt|Xt+1,C) = q(Xt|Xt+1,C), i.e., the
diffusion model is used for proposal, and w(Xt,Xt+1|C) =
�(Xt|C)

�(Xt+1|C) . Suppose v(Xt+1|C) = q(Xt+1|C)�(Xt+1|C),
using the recursive relationship in Eq. (14), it can be shown
that

v(Xt|C) /
Z

v(Xt+1|C)q(Xt|Xt+1,C)w(Xt,Xt+1|C) dXt+1

=

Z
q(Xt+1|C)�(Xt+1|C)q(Xt|Xt+1,C)

�(Xt|C)
�(Xt+1|C)

dXt+1

=

Z
q(Xt,Xt+1|C)�(Xt|C) dXt+1

= q(Xt|C)�(Xt|C).
(15)

At time step T , let �(XT |C) = 1, and thus v(XT |C) =

q(XT |C)�(XT |C). Therefore, by mathematical induction,
v(Xt|C) = q(Xt|C)�(Xt|C) for all t = 0, . . . , T .

Algorithm 1 describes the overall procedure of our par-
ticle filtering framework.

B. Resampling Weight Calculation
In this section, we provide the detailed process for calcu-
lating resampling weights, and more specifically, the cor-
rection term �(Xt|C). Algorithm 2 describes the overall
procedure. We will mainly focus on the hybrid approach.
For the discriminator-based approach, please refer to Sec-
tion 3.5.

Recall that in the hybrid approach, �(Xt|C) consists of
two terms: unconditional likelihood ratio p(Xt)

q(Xt)
and object

mention ratio p(OC |Xt)
q(OC |Xt)

. The unconditional likelihood ratio
can be estimated with an unconditional discriminator as in
Eq.(7). We will next elaborate on how to estimate the object
mention ratio.
Estimating object mention ratio. As shown in Eq. (9),
the object mention ratio can be decomposed as
Q

i:OCi=1 p(OCi = 1|Xt)Q
i:OCi=1 q(OCi = 1|Xt)

·
Q

i:OCi=0 p(OCi = 0|Xt)Q
i:OCi=0 q(OCi = 0|Xt)

,

where we focus on the first term that corresponds to the
missing object errors.

To compute p(OCi = 1|Xt), notice that under p distribu-
tion, OCi = OXi, because, by definition, a text caption is
constructed to mention the objects that appear in the corre-
sponding real image. Therefore,

p(OCi = 1|Xt) = p(OXi = 1|Xt)

¨
= EX0⇠p(X0|Xt)[p(OXi = 1|X0)]

≠
⇡ p̂(OXi = 1|f(Xt)),

(16)

where equality ¨ is by simple chain rule and the fact that
p(OXi|X0,Xt) = p(OXi|X0) because OXi is defined as
the object occurrence in the clean image X0, and hence
is conditionally independent of Xt. For ≠, we make two
approximations. First, we replace drawing a sample of
X0 from p(X0|Xt) with the minimum mean squared error
(MMSE) estimate of X0 from Xt, denoted as f(Xt), which
can be conveniently and efficiently predicted by the denois-
ing network via one-step generation of X0 from Xt. Sec-
ond, we approximate the true object occurrence probability
p(OXi|X0) with the one estimated by the object detector
p̂(OXi|X0).

On the other hand, q(OCi = 1|Xt) can be most intu-
itively computed by training a neural network to predict ob-
ject mentions in the input text from the generated samples.
However, this approach is inefficient and would need to re-
train the network everytime the denoising scheme changes.
We would like to derive a more efficient alternative taking
advantage of the object detector. Formally (notice that it is
no longer true that OCi = OXi),

q(OCi = 1|Xt) = EOXit⇠q(OXit|Xt)[q(OCi = 1|OXit,Xt)]

= q(OXit = 0|Xt)q(OCi = 1|OXit = 0,Xt)+

q(OXit = 1|Xt)q(OCi = 1|OXit = 1,Xt),
(17)

where OXit denotes the occurrence of object i in the
clean image predicted from Xt, i.e., f(Xt). Similar to
Eq. (16), the probability q(OXit|Xt) can be estimated by
p̂(OXi|f(Xt)).Therefore, what makes Eq. (17) different
is the additional term q(OXit = 0|Xt)q(OCi = 1|OXit =

0,Xt), which corresponds to the case where even if the ob-
ject detector fails to detect the object i, there is still chance
that the caption used to generate the image contains object
i, considering the imperfect diffusion model that may miss
objects mentioned in the caption.

To calculate q(OCi = 1|OXit,Xt), we further make an
assumption that object occurrence OXit is a sufficient statis-
tic to predict the object mention of the same object. Hence
q(OCi = 1|OXit,Xt) = q(OCi = 1|OXit). According to the
Bayes rule,

q(OCi = 1|OXit) =
q(OXit|OCi = 1)q(OCi = 1)P
OCi2{0,1} q(OXit|OCi)q(OCi)

. (18)



Algorithm 1 Particle Filtering Framework for Correcting Diffusion Generation
1: Input:
2: - Diffusion model with denosing distribution q(Xt|Xt+1,C), condition signal c, number of particles K.
3: - Note: operations involving index k are performed for k 2 {1, . . . ,K}.
4:
5: Initialization:
6: Sample x

(k)
T

⇠ q(XT ), set �(x(k)
T

|c) = 1

7: for t = T � 1 to 0 do . Iterate over time steps
8: x̃

(k)
t ⇠ q(Xt|x(k)

t+1, c) . Proposal
9: �(x̃(k)

t |c) = CALCCORRECTION
⇣
x̃

(k)
t , c, t

⌘
. Calculate correction term in Eq. (5)

10: w(x(k)
t+1, x̃

(k)
t |c) = �(x̃(k)

t |c)
�(x(k)

t+1|c)
. Calculate resampling weight

11: x
(k)
t ⇠ MULTINOMIAL

⇣
{x̃(k)

t }Kk=1; {w(x(k)
t+1, x̃

(k)
t |c)}Kk=1

⌘
. Resampling

12: end for
13:
14: Output:
15: {x(k)

0 }Kk=1 that approximately follow the ground-truth distribution p(X0|c).

Algorithm 2 CALCCORRECTION

1: Input:
2: - Sample x̃t, conditional signal c, time step t.
3: - Conditional discriminator d(Xt|C; t), unconditional discriminator d(Xt; t), object detector p̂(OXi = 1|X0), statistics

it estimated from historically generated images, hyper-parameter ⇡it.
4:
5: if use discriminator-based approach then . Section 3.5
6: �(x̃t|c) =

d(x̃t|c; t)
1� d(x̃t|c; t)

. Eq. (7)

7: else if use hybrid approach then . Section 3.6
8:

p(x̃t)
q(x̃t)

=
d(x̃t; t)

1� d(x̃t; t)
. Unconditional likelihood ratio

9: p(OCi = 1|x̃t) ⇡ p̂(OXi = 1|f(x̃t)) . Eq. (10)
10: q(OCi = 1|x̃t) ⇡ p̂(OXi = 1|f(x̃t)) + p̂(OXi = 0|f(x̃t))

(1�it)⇡it
(1�it)⇡it+1�⇡it

. Eq. (11)

11: �t(x̃t|c) =
p(x̃t)
q(x̃t)

·
Q

i:OCi=1 p(OCi = 1|x̃t)Q
i:OCi=1 q(OCi = 1|x̃t)

. Eq. (13)

12: end if
13:
14: Output:
15: - Correction term �t(x̃t|c).

Both q(OXit|OCi = 1) and q(OXit|OCi = 0) can be esti-
mated from the samples of distribution q(Xt|C). Specif-
ically, consider a different set of H samples {x(h)

t } that
are generated without particle filtering process. For each
sample x

(h)
t , we compute the object occurrence estimate

ÔXit by feeding the predicted clean image, f(x(h)
t ), to the

object detector, and thresholding the output probability of
the object detector with 0.5. Then q(OXit = 1|OCi = 1)

can be estimated by calculating the percentage of sam-
ples whose ÔXit = 1 among the samples whose corre-
sponding input caption mentions object i, as in Eq. (12).
q(OXit = 1|OCi = 0) can be calculated similarly from sam-

ples whose input caption does not mention object i. In
practice, since the diffusion model seldom generates ob-
jects that are not mentioned in the text, we empirically find
that q(OXit = 1|OCi = 0) is very close to zero. Hence,
to reduce computation complexity, we will set this term to
zero, and q(OXit = 0|OCi = 0) to one. Finally, q(OCi = 0)

and q(OCi = 1) controls how much weight we would like
to place on each case, and we will treat them as hyper-
parameters and denote q(OCi = 1) as ⇡it. Note that al-
though ⇡it can be dependent on both i and t, for simplicity,
we set ⇡it to be the same for all i and t.

Denote q(OXit = 1|OCi = 1) as it, with the above as-



sumptions,

q(OCi = 1|OXit = 1) = 1

q(OCi = 1|OXit = 0) =
(1� it)⇡it

(1� it)⇡it + 1� ⇡it

.
(19)

Plug Eq. (19) back to Eq. (17), we can derive Eq. (11) in
the main paper.

C. Experiments on Text-to-image Generation
C.1. Reparameterize Stable Diffusion for Reverse-

time SDE
Following Karras et al. [28] and Xu et al. [64], we use the
reverse-time SDE [1] for generation:

dx = �2�̇(t)�(t)rx log p(x;�(t)) dt+
p

2�̇(t)�(t) d!t,
(20)

where !t is the standard Wiener process, �(t) = t is the
noise level at time t, and p(x;�(t)) is the distribution ob-
tained by adding Gaussian noise of standard deviate �(t) to
the input data.

To use stable diffusion [47] in Eq. (20), the key
is to reparameterize the model to estimate the score
rx log p(x;�(t)). Following Karras et al. [28], we estimate
the score as follows:

rx log p(x;�) =
D(x;�)� x

�2
,

D(x;�) = cskip(�)x+ cout(�)F (cin(�)x; cnoise(�)) ,
(21)

where F (·) is the denoising network trained in stable dif-
fusion, cskip(�) = 1, cout(�) = ��, cin(�) = 1/

p
�2 + 1,

cnoise(�) = 999��1
train(�), �train(t) is the noise schedule used

when training the denoising network, and ��1
train(�) denotes

the inverse of �train(t). In particular, the forward process of
Stable Diffusion v2.1-base can be considered as a discrete
version of the VP SDE [55]:

dx = f(t)x dt+ g(t) d!t, (22)

where
f(t) = �1

2
�(t), g(t) =

p
�(t),

�(t) =
�
(�0.5

max � �0.5
min )t+ �0.5

min
�2

,
(23)

with �min = 0.85, and �max = 12. We follow Karras et al.
[28] (Eqs. (152) - (163)) to derive �train(t) by plugging in
the scaled linear schedule �(t) =

�
(�0.5

max � �0.5
min )t+ �0.5

min
�2

used in Stable Diffusion v2.1-base, which results in:

�train(t) =

q
e

1
3�2

dt
3+�d�

0.5
min t2+�mint � 1, (24)

where �d = �0.5
max � �0.5

min .
Finally, although Stable Diffusion is trained with discrete

time steps, we follow Lu et al. [38] to directly feed the con-
tinuous time value cnoise(�) to the model.

C.2. Implementation Details for Baselines
Identify objects in the caption. For methods that require
the identification of objects in the caption, we use the fol-
lowing two steps:
1. Extract all noun phrases in the caption using spaCy.2 Fil-

ter out noun phrases that are stop words, e.g., “which”
and “who”.

2. Check if extracted noun phrases match one of the object
categories in MS-COCO, and only keep the phrases that
belong to MS-COCO objects. The match is determined
by whether the Levenshtein Distance between the noun
phrase and object category name is smaller than 0.1 of
the length of the noun phrase and object category name.

The same process is also used to filter out 261 captions in
MS-COCO that contain at least four objects (to measure ob-
ject occurrence), and 5,000 captions in MS-COCO that con-
tain at least one object (to measure FID).

Sample selection criteria. For OBJECTSELECT, we use
Eq. (2) to select the best image from generated images.
Specifically, since the object detector outputs multiple pro-
posal regions, where each proposal region comes with a pre-
dicted probability for object i, we take the maximum prob-
ability for object i over all proposal regions as p̂(OXi =

1|x0). For REWARDSELECT and TIFASELECT, we use the
official implementation [29] to select images, except that
we only include object-related questions for TIFASELECT
since our focus is on object occurrence.

For other baselines, we use the official implementation
to generate images. For SPATIAL-TEMPORAL, we only op-
timize for five rounds since we found further optimization
does not improve performance. For D-GUIDANCE, we only
apply guidance when �(t) < 5 since we found at large noise
levels, the object detector barely detects any object, which
results in a noisy gradient. All methods are evaluated on
both Restart sampler [64] and EDM sampler [28]. The only
exceptions are SPATIAL-TEMPORAL and ATTEND-EXCITE,
which use the original sampler in their papers.

C.3. Discriminator Training
We follow Kim et al. [31] to train both unconditional
and conditional discriminators. Table 3 shows the hyper-
parameters for discriminator training.

Training data and objective. We use LAION Aesthetics
[52] to train discriminators. We randomly sample 1M im-
ages with aesthetics score higher than 6 as real images. For
fake images, we generate 1M images with 49 NFE using
EDM sampler. For conditional discriminator, the captions
used to generate fake images are the same with the captions
of the real images. For unconditional discriminator, we use
a different set of 1M captions to generate fake images.

2https://spacy.io.

https://spacy.io


Unconditional Conditional
# real images 1,000,000 1,000,000
# fake images 1,000,000 1,000,000
Same captions for real & fake images? 8 4
# Epochs 2 2
Batch size 128 128
Learning rate 10�4 10�4

Time sampling Uniform Uniform
Total GPU hours 22 22
GPUs A6000 A6000

Table 3. Configurations of discriminator training for text-to-image
generation.

The discriminators are trained with the canonical dis-
crimination loss in Eq. (6). Specifically, given a clean im-
age, we uniformly sample time t 2 [10�5, 1] and follow Eq.
(22) to get the corresponding noisy image. The discrimina-
tor is then trained to discriminate noisy version of real and
fake images.
Model architecture. We use the hidden representations of
the middle block of the U-Net [48] to predict whether an
image is real or fake, since previous works have found that
these representations capture semantic information in the
input image [4, 32]. Specifically, we initialize the discrimi-
nator with the U-Net in Stable Diffusion v2.1-base and only
keep its down and middle blocks. We add a linear prediction
layer on top the representations of the middle block. Dur-
ing training, we freeze the down block and only fine-tune
the middle block and the prediction layer.

C.4. Sampling Configurations
For all sample selection methods (including ours), we gen-
erate each image with a fixed NFE and report performance
when K = 5, 10, 15 images are generated.

Table 4 shows the sampling configurations for
both samplers. For Restart sampler, Nmain denotes
the number of steps in the main backward process,
NRestart,i,Ki, tmin,i, tmax,i is the number of steps, number
of repetitions, minimal, and maximum time points in the
i-th restart interval, and l is the number of restart intervals.
Following Xu et al. [64], we use Euler method for the
main backward process and Heun method for the restart
backward process. Please refer to the original paper for
detailed explanations. For our PF methods, the resampling
is always performed before adding noise, i.e., at time tmin,i,
thus resampling is perfromed six times in total. For EDM
sampler, N denotes the number of denoising steps, ni

denotes the index of steps when resampling is performed
(for PF methods), and m denotes the number of resampling
steps. Resampling is only performed four times because we
empirically find performing resampling at each denoising
step does not improve performance significantly compared
to resampling only at a subset of steps.

Table 5 shows the comparison of computation cost for all

Restart configuration
Nmain, {(NRestart,i,Ki, tmin,i, tmax,i)}li=1

30, {(4, 1, 1.09, 1.92), (4, 2, 0.59, 1.09), (4, 2, 0.30, 0.59), (4, 1, 0.06, 0.30)}

EDM configuration: N, {ni}mi=1

25, {10, 13, 16, 19}

Table 4. Sampling configurations for text-to-image generation.

methods. The reported cost for sample selection methods is
when K = 5 images are generated for each caption, since
their performance already exceeds other baselines at K = 5.
Based on the table, all methods are significantly faster than
SPATIAL-TEMPORAL, and sample selection methods have
similar runtime with ATTEND-EXCITE on EDM sampler
and D-GUIDANCE on Restart sampler. Moreover, the sam-
ple selection methods can be run in parallel much easier
than other methods, so their runtime can potentially be fur-
ther reduced.

C.5. Performance Breakdown by Object Category
In this section, we show the performance of our method
for each object category in order to study ∂ Which objects
benefit more from our method; and ∑ How does the ob-
ject detector affect our method. Figure 7a shows the class-
wise object occurrence of our method and standard SD on
MS-COCO, where classes are sorted by the amount of im-
provement achieved by our method and we only keep the
classes that appear in at least 5 captions. As can be ob-
served, our method improves or matches the performance
of the standard SD on all objects. It is particularly benefi-
cial on small objects with fine details, such as bottles, forks,
and wine glasses. Figure 7b further shows the class-wise
average precision of the object detector used during gener-
ation, evaluated on MS-COCO. As shown in the figure, the
performance of our method does not correlate well with the
performance of the detector. Instead, it depends more on
the capability of the diffusion model in correctly generating
the objects.

C.6. Additional Results with EDM Sampler
Figure 8 shows the results when EDM is used as the un-
derlying sampler. There are two observations from the fig-
ure. First, the overall trend of all methods aligns with Fig-
ure 4 when Restart is used as the sampler. In particular,
the sampling-based methods generally outperform the non-
sampling-based ones. And the three methods proposed in
this paper, OBJECTSELECT, PF-DISCRIMINATOR, and PF-
HYBRID lie at the frontier of the performance trade-off,
significantly outperform other methods. Furthermore, PF-
HYBRID is the only method that simultaneously achieves
a high object occurrence and a low FID. Second, the per-
formance of EDM sampler is generally worse than that of



EDM Sampler Restart Sampler
NFE Require Gradient? Runtime (s) NFE Require Gradient? Runtime (s)

SD [47] 49 8 7 66 8 9
D-GUIDANCE [31] 67 4 20 106 4 41
SPATIAL-TEMPORAL⇤ [61] 250 4 110 – – –
ATTEND-EXCITE⇤ [7] 50 4 29 – – –
TIFASELECT [29] 245 8 39 330 8 50
REWARDSELECT [29] 245 8 32 330 8 43
OBJECTSELECT 245 8 32 330 8 43
PF-DISCRIMINATOR 245 8 33 330 8 44
PF-HYBRID 265 8 39 360 8 53

Table 5. Computation cost for all methods. Runtime is measured on a single NVIDIA V100 GPU. ⇤: the two baselines use the original
samplers in their papers.

(a) Class-wise object occurrence of our method and standard SD on MS-COCO.

(b) Class-wise average precision of the object detector on MS-COCO.

Figure 7. Class-wise performance of our method and the object detector.

Restart sampler on both object occurrence and FID, which
shows the superiority of the restart process.

C.7. Additional Results with SD 1.5
We also experiment with Stable Diffusion v1.5 on
MS-COCO. The results are shown in Figure 9. We observe
a similar trend with the results from Stable Diffusion v2.1-
base (Figure 4), where our method achieves the best overall
performance among baselines.

D. Experiments on Unconditional and Class-
conditioned Generation

D.1. Discriminator Training
We follow the official implementation [31] to train discrim-
inators on ImageNet-64 and FFHQ since the original pa-

per did not experiment on the dataset or did not release the
trained discriminator. Table 6 shows the training configura-
tions. Following Kim et al. [31], the discriminators use fea-
tures extracted by the frozen pre-trained classifier in Dhari-
wal and Nichol [13], and a shallow U-Net is added to dis-
criminate images. During training, the pre-trained classifier
is frozen and only the shallow U-Net is trained. Please refer
to Kim et al. [31] for more details.

D.2. Sampling Configurations

In order to have a fair comparison in terms of computation
cost, we compare all methods under the same total NFE. For
PF and D-SELECT, we generate each image with a fixed
NFE and vary the number of particles in generation, i.e.,

choose value of K from {2, 4, 6}. For the original sam-
pler and D-GUIDANCE, we increase the number of steps or



Figure 8. FID (#) vs. Object occurrence (") for all meth-
ods evaluated with EDM sampler. Ideal points should scatter
at the bottom right corner. Object occurrence is measured on
GPT-Synthetic (left) and MS-COCO (right), and FID is mea-
sured on MS-COCO. K = 5, 10, 15 images are generated for sam-
ple selection methods, and the sizes of points indicate the value of
K (larger K has larger points). The method that achieves the best
combined performance is highlighted in red.

Figure 9. FID (#) vs. Object occurrence (") for all methods eval-
uated with Stable Diffusion v1.5 and Restart sampler. Ideal points
should scatter at the bottom right corner. Object occurrence and
FID are both measured on MS-COCO. K = 10 images are gener-
ated for sample selection methods.

restart iterations to match the total NFE of sampling-based
methods. All methods are evaluated on both Restart and
EDM samplers. Table 7 and 8 show the sampling configu-
rations for each sampler.

For EDM sampler, we use the same hyper-parameters
as the original paper, except the Schurn (which controls the
amount of noise added in each denoising step) on FFHQ,
since we find adding small amount of noise (Schurn > 0)
outperforms the original setting where no noise is added
(Schurn = 0). Additionally, for time steps after resampling
is performed, we increase Schurn to (

p
2 � 1)N (N is the

number of denoising steps), which is the maximum allowed
value in Karras et al. [28]. Since we find a large added noise
after resampling can improve performance (please see Sec-
tion E). For Restart sampler, we use the same configurations
as the original paper on ImageNet-64 and slightly mod-
ify them to adapt to FFHQ since the original paper did not

ImageNet-64 FFHQ

Training Configurations
# real images 1,200,000 60,000
# fake images 1,200,000 60,000
# Epochs 50 50
Batch size 1024 256
Learning rate 5⇥ 10�4 3⇥ 10�4

Time sampling Importance Uniform
Total GPU hours 70 4
GPUs A6000 A6000

Shallow U-Net Architecture
Input shape (B, 8, 8, 512) (B, 8, 8, 512)

Class condition 4 8
# Resnet blocks 4 4
# Attention blocks 3 3

Table 6. Configurations of discriminator training for class-
conditioned (ImageNet-64) and unconditional (FFHQ) gener-
ation.

NFE per Image Resampling Steps: {ni}mi=1 Schurn

ImageNet-64

127 {31, 35, 39, 43, 47, 51} 10
255 – 20
511 – 40
767 – 60

FFHQ

63 {15, 19, 23, 27} 1.25
127 – 2.5
255 – 5.0
399 – 7.8125

Table 7. Sampling configurations for EDM sampler on standard
benchmarks. Two highlighted rows are used in PF and D-SELECT
to generate one image. The resampling steps are only applicable
to our PF methods. Schurn controls the amount of noise added in
each denoising step (please refer to Karras et al. [28] for details).

experiment on FFHQ.

D.3. Additional Results with EDM Sampler

Figure 10 shows FID as a function of total NFE when
EDM is used as the sampler. Additionally, we also plot
PF with Restart sampler for reference. There are three
observations from the figure. First, FIDs of all methods
generally decrease as NFE increases, and D-GUIDANCE,
D-SELECT, and PF all outperform the original sampler.
Second, our PF with Restart sampler achieves the lowest
FID on both datasets. Third, the performance gain of our
method when combined with EDM sampler is not as large
as that when combined with Restart sampler. The difference
can be ascribed to the fact that resampling is performed at
smaller time steps for Restart sampler, which better selects
a promising population among the particles since the dis-



NFE per Image Restart Configuration
Nmain, {(NRestart,i,Ki, tmin,i, tmax,i)}li=1

ImageNet-64

67 18, {(5, 1, 19.35, 40.79), (5, 1, 1.09, 1.92), (5, 1, 0.59, 1.09), (5, 1, 0.06, 0.30)}
99 18, {(3, 1, 19.35, 40.79), (4, 1, 1.09, 1.92), (4, 4, 0.59, 1.09), (4, 1, 0.30, 0.59), (4, 4, 0.06, 0.30)}

165 18, {(3, 1, 19.35, 40.79), (4, 1, 1.09, 1.92), (4, 5, 0.59, 1.09), (4, 5, 0.30, 0.59), (4, 10, 0.06, 0.30)}
203 36, {(4, 1, 19.35, 40.79), (4, 1, 1.09, 1.92), (4, 5, 0.59, 1.09), (4, 5, 0.30, 0.59), (6, 6, 0.06, 0.30)}
385 36, {(3, 1, 19.35, 40.79), (6, 1, 1.09, 1.92), (6, 5, 0.59, 1.09), (6, 5, 0.30, 0.59), (6, 20, 0.06, 0.30)}
535 36, {(6, 1, 19.35, 40.79), (6, 1, 1.09, 1.92), (7, 6, 0.59, 1.09), (7, 6, 0.30, 0.59), (7, 25, 0.06, 0.30)}

FFHQ

67 18, {(5, 1, 1.09, 1.92), (5, 2, 0.59, 1.09), (5, 1, 0.06, 0.30)}
119 18, {(8, 1, 19.35, 40.79), (8, 2, 1.09, 1.92), (8, 2, 0.59, 1.09), (8, 1, 0.06, 0.30)}
251 36, {(11, 1, 19.35, 40.79), (11, 3, 1.09, 1.92), (11, 3, 0.59, 1.09), (11, 2, 0.06, 0.30)}
401 48, {(18, 1, 19.35, 40.79), (18, 3, 1.09, 1.92), (18, 3, 0.59, 1.09), (18, 2, 0.06, 0.30)}

Table 8. Sampling configurations for Restart sampler on standard benchmarks. Two highlighted rows are used in PF and D-SELECT to
generate one image.

Figure 10. FID (average of 3 runs) on ImageNet-64 (left) and
FFHQ (right) when evaluated with EDM sampler. The PF with
Restart sampler (dashed line) is added for reference. Error bars
indicate standard deviations.

criminator can better distinguish real and model-generated
images at smaller time steps. Additionally, the added noise
after resampling is larger for Restart, which also benefits
the exploration around the promising particles (see Section
E for the impact of amount of added noise).

D.4. Additional Results with Effective NFE
As mentioned in Section 4.2, NFE is not an adequate mea-
sure of computation cost in our setting, since it only mea-
sures the number of evaluations of the denoising U-Net and
ignores other compute costs such as the forward and back-
ward passes of the discriminator. If all these costs are con-
sidered, D-GUIDANCE incurs 1.55⇥ compute cost per NFE
compared to the original sampler, whereas our method only
incurs 1.02⇥ compute cost per NFE compared to the orig-
inal sampler. To have a fair comparison, we re-plot FID
against effective NFE, which corrects for the disparage in
compute costs per NFE. We further add a new point for D-

Figure 11. FID (average of 3 runs) on ImageNet-64 (left) and
FFHQ (right) when evaluated with Restart sampler. Error bars in-
dicate standard deviations. The x-axis indicates the effective NFE,
which considers all compute costs including the forward and back-
ward passes of the discriminator. D-GUIDANCE has 1.55⇥ effec-
tive NFE compared to the original NFE, whereas our method only
has 1.02⇥ effective NFE compared to the original NFE. The re-
sults with original NFE are shown in Figure 6.

GUIDANCE at small NFE and remove a point at excessively
large NFE for better comparison. The results shown in Fig-
ure 11 illustrates that our method achieves the best perfor-
mance across all compute costs

D.5. Additional Results with ADM and VP Diffu-
sion Models

We also experiment with pre-trained diffusion models
in Dhariwal and Nichol [13] and Song et al. [55] on
ImageNet-64 and FFHQ respectively. The results are
shown in Figure 12, where both NFE and effective NFE in-
troduced in Section D.4 are considered. As can be observed,
our method outperforms baselines across various diffusion
models.



(a) FID against NFE.

(b) FID against effective NFE.

Figure 12. FID on ImageNet-64 with ADM diffusion model
[13] (left) and FFHQ with VP diffusion model [55] (right) when
evaluated with Restart sampler.

Before After
K = 2 1.37 1.53
K = 4 1.11 1.31
K = 6 1.07 1.23

Table 9. FID on ImageNet-64 when resampling is inserted be-
fore or after adding noise.

E. Additional Ablation Study
In this section, we present additional ablation studies that
investigate three design choices in our particle filtering
framework. Particularly, we will study the impacts of
when the resampling is inserted (i.e., before or after adding
noise), the amount of noise added, and the NFE used to
generate a single image. We will study their impacts in
class-conditioned generation on ImageNet-64 and when
Restart sampler is used.

We start by studying when is a proper time to insert
resampling during the generation. Particularly, we com-
pare two time points to insert resampling. ∂ Resample be-
fore adding noise; ∑ Resample after adding noise. Table
9 shows the FID for both cases. It can be observed that
resampling before adding noise significantly outperforms
the counterpart. There could be two potential reasons for
the performance difference. First, resampling after adding
noise means resampling weights are estimated at higher
noise scales, which is less accurate. Second, compared to

Original noise Reduced noise
K = 2 1.37 1.54
K = 4 1.11 1.37
K = 6 1.07 1.31

Table 10. FID on ImageNet-64with original and reduced noise.

Figure 13. FID on ImageNet-64 when D-SELECT and our PF
method are applied to different NFEs per image.

∑ that adopts a selection-after-exploration procedure, ∂ se-
lects particles before exploration, which allows more parti-
cles to be sampled around the promising particles with large
weights.

Following the above intuition, we further explore the im-
pact of the amount of noise added. Specifically, we change
the restart configuration such that the variance of the added
noise at time t is reduced to t2, while keeping all other con-
figurations the same. Table 10 shows the FID when the
original and reduced noise is added. The results indicate
the importance of a large added noise.

Finally, we explore the impact of the NFE for each im-
age. Instead of fixing an NFE and only varying the num-
ber of particles, we now evaluate our method when it is ap-
plied to different NFEs. Figure 13 shows the FID when
each image is generated with NFE = 67, 99, 165. For each
NFE, we further report the performance when K = 2, 4, 6

images are generated (except for NFE = 165 due to the
large cost). There are two observations from the figure.
First, PF consistently outperforms D-SELECT across all
NFEs, again demonstrating its advantages. Second, differ-
ent NFEs present varying performance trends. When the
number of denoising steps is small (NFE = 67), FID reaches
a plateau at K = 4 particles, and further increasing the value
of K does not improve performance due to the large dis-
cretization error. On the contrary, FID continues decreas-
ing as K increases when the discretization error is small
(NFE = 99, 165). Particularly, generating K = 4 particles
when NFE = 165 achieves the state-of-the-art FID of 1.02
on ImageNet-64.



A kitchen with a green oven, pink 
refrigerator, microwave and sink.

The red apple was placed beneath 
the sandwich.

Color binding Spatial relation

An older person lays in bed with a 
small dog and large cat cuddled up.

Other attributes

Two donuts, banana, cup and a 
book on the table.

Object counts

Figure 14. Categories of common failure cases of our method. Errors are highlighted in red.

F. Generated Samples
In this section, we present more generated samples for our
method and baselines.

Figure 14 illustrates four types of failure cases of our
method. In general, our method tends to miss the attributes
that are not captured by the object detector, such as col-
ors, locations, counts, sizes, etc, as shown by the four im-
ages, respectively. This is because our framework drops the
correction term for object characteristics in Eq. (8). How-
ever, our method remains flexible to incorporate other de-
sired measures into the particle weight calculation.

Figures 15 and 16 show the uncurated samples on
ImageNet-64 and FFHQ respectively. As can be ob-
served, both D-GUIDANCE and PF generate images with
higher quality than the original sampler. Compared to D-
GUIDANCE, our method generates images with closer and
more detailed views (e.g., class “mongoose”).

G. Details of Subjective Evaluation
We recruit human annotators to evaluate both object occur-
rence and image quality of generated images. For object
occurrence, annotators are provided with an image and a
list of objects, and they are asked to identify whether each
object occurs in the image or not. For image quality, an-
notators are given two images generated based on the same
caption, where one image is generated by PF-HYBRID and
the other image by a baseline. The caption is not revealed
to annotators in order to make the evaluation focus more on
image quality instead of image and text alignment. The an-
notation interfaces for object occurrence and image quality
are shown in Tables 11 and 12 respectively.



gyromitra toaster mongoose file cabinet
mountain 

tent bubble eft collie
rhinoceros 

beetle patio

gyromitra toaster mongoose file cabinet
mountain 

tent bubble eft collie
rhinoceros 

beetle patio

gyromitra toaster mongoose file cabinet
mountain 

tent bubble eft collie
rhinoceros 

beetle patio

Particle filtering    NFE: 594    FID: 1.07 

D-guidance    NFE: 535    FID: 1.16 

Original sampler    NFE: 535    FID: 1.39

Figure 15. Uncurated samples on ImageNet-64 for our method and baselines. All methods use Restart sampler.



Particle filtering    NFE: 268    FID: 2.02 

D-guidance    NFE: 251    FID: 2.08 

Original sampler    NFE: 251    FID: 2.47

Figure 16. Uncurated samples on FFHQ for our method and baselines. All methods use Restart sampler.



Instructions:
You will be given an image generated by some AI algorithm, your task is to identify all objects that appear in the image.
Notes:

• You should ignore the characteristics of the object such as color and count when deciding whether it appears or not.
E.g., if the object is “a red apple,” you should still select it even if the image shows a green apple.

• Only select objects that you are confident about. E.g., the “knife” in the image below is not clear, so you should not
select it.

Example:

Do the following objects appear in the image?
• A black blender: Yes • bottle: No • glass: Yes • cutting board: Yes • knife: No

Task:
Please identify all objects appear in the image

⇤ white kitchen sink ⇤ white coffee cups ⇤ wine glasses ⇤ knives ⇤ None of the above

Table 11. Instructions and an example task for the subjective evaluation on object occurrence.



Instructions:
In this task, you will see two images that are generated based on a text caption by different AI algorithms. You will be asked
to evaluate which image looks more real and natural.

Example:

(A) (B)

Image (B) generates a natural cat and laptop, whereas the laptop in image (A) is distorted, and the human body is also
unnatural. Therefore, image (B) is better.

Task:
Which image looks more natural and like a real photo?

(A) (B)

⇤ (A) is better ⇤ (B) is better

Table 12. Instructions and an example task for the subjective evaluation on image quality.
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