
Cross-dimension Affinity Distillation for 3D EM Neuron Segmentation
Supplementary Material

Xiaoyu Liu1 Miaomiao Cai1 Yinda Chen1 Yueyi Zhang1,2 Te Shi2

Ruobing Zhang3,2 Xuejin Chen1,2 Zhiwei Xiong1,2

1MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and Technology of China
2Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

3Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences

liuxyu@mail.ustc.edu.cn, zwxiong@ustc.edu.cn

1. Architecture of the 2D Y-shape network
We present the detailed architecture of the 2D Y-shape network in Fig. 1, as introduced in Section 3 of our main paper. This
network comprises an encoder and two decoder branches. The encoder initially extracts features independently from the
two slices and then combines them using the concatenation operation, effectively capturing the inter-slice dependencies. The
decoder subsequently decodes the fused features into two separate feature spaces, allowing for efficient affinity generation
and cross-dimension distillation information interaction. This architecture design enables effective feature extraction and
information fusion, enhancing the performance of our network in modeling 3D affinities using 2D networks.
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Figure 1. The detailed architecture of the 2D Y-shape network.

2. More qualitative results
To further demonstrate the effectiveness and reliability of our method in practical applications, we present the 3D visual
comparison results of our built Wafer4 dataset in Fig. 2. These figures clearly illustrate that our proposed method accurately
preserves the intricate 3D structures of neurons, surpassing the performance of other existing methods.
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Figure 2. The 3D visual results on the Wafer4 dataset. The arrows indicate the segmentation errors in the 3D structure.

3. Analysis on the visualization of the embedding maps
As depicted in Fig. 3, we employ the PCA technique to project the embeddings of an EM section from a high-dimensional
space onto a 3-dimensional RGB color space. The two embedding maps shown correspond to the outputs of the 3D CNNs
and 2D CNNs, respectively.

When using 3D networks, a limitation arises due to their requirement of multiple 3D divided patches as input. This poses
challenges when processing data on the 2D section plane. To overcome this limitation, we adopt a sliding window approach
to extract 3D patches from the volume, which are then stitched together to obtain predictions for the entire section. However,
this sliding window approach introduces additional errors, and the stitching process may result in artifacts at the boundaries
of the patches. Moreover, predictions from different patches may not align seamlessly, adversely affecting the accuracy and
coherency of the final predictions.

By projecting the embeddings onto a 3D RGB color space, we can observe that the embedding map generated by the 3D
CNNs exhibits noticeable checkerboard-like artifacts. In contrast, our predicted embedding map using 2D CNNs demon-
strates a clearer response at the target boundary and is not affected by the issues associated with sliding windows.
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Figure 3. Embedding maps comparison between 3D CNNs and 2D CNNs
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