
DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data

Supplementary Material

In this supplementary document, we provide details and
extended experimental results omitted from the main paper
for brevity. Specifically, Sec. 1.1 provides details of the
NeRF Auto-decoder. Sec. 1.2 provides details of the 3D
Super-Resolution module. Then, we cover the training de-
tails in Sec.1.3, including loss functions and warm-up train-
ing on clean data. Sec. 2 presents experiment details and
hyperparameters. Sec. 3 gives additional ablation studies
and more qualitative results. Finally, the limitations of our
method are discussed in Sec. 4.

In addition, we provide video results for all visualiza-
tions in the supplementary file.

1. Model Details

1.1. NeRF Auto-decoder

We employ a NeRF Auto-decoder to extract features from
the generated tri-planes and get NeRF parameters. This
auto-decoder consists of several multi-layer perceptrons to
process the tri-plane features fg and fc separately. Fig. 1
illustrates its architecture, which contains several fully con-
nected layers with non-linear activation functions. The de-
coding process involves two distinct branches to handle the
tri-plane features separately, ensuring that fg encapsulates
only the geometry information and fc contains only the cor-
responding color features.

1.2. 3D Super Resolution

Similar to the structure of the base tri-plane diffusion model,
the 3D super-resolution (SR) module also employs a U-Net
model as its backbone. However, we apply only one up-
sampling layer that directly scales the tri-plane feature from
1282 to 5122. To enable efficient training with a larger batch
size, we train the SR module separately. Therefore, we can
directly use the saved tri-plane features during the training
of the base model to train the SR module. Following cas-
caded image generation [6], we add Gaussian blurring and
Gaussian noises to the intermediate tri-plane feature f ′(·).

For training, alongside the L2 loss Lgeo(ψ
SR) and

Lcol(ϕ
SR) on tri-plane, we apply an entropy loss

Lentropy = ρ · log2(ρ)− (1− ρ) · log2(1− ρ)

to the generated NeRF to encourage full transparent or
opaque points, ensuring a smoother SR generation. Here
ρ denotes the cumulative sum of density weights computed
when computing NeRF parameters from tri-plane features.
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Figure 1. Architecture of the NeRF auto-decoder.

1.3. Training and Implementation Details

Loss function. To enable larger batch size and expedite
training, we first exclude the 3D super-resolution (SR) mod-
ule and train the base model end-to-end at 1282, by mini-
mizing the following objective:

Lbase = λgeoLgeo(ϕ, θ) + λcolLcol(ψ)

+ λradLrad(fg, fc, ω)

To speed up the convergence of tri-planes learned from
multi-view images (i.e., Lrad(fg, fc, ω)), we adopt prior
gradient caching [4] and save the diffusion gradients
∇fgLgeo and ∇fcLcol for re-using to update the tri-plane.
It enables us to update Lrad(fg, fc, ω) multiple times in one
training iteration.

Then we freeze the base tri-plane diffusion module and
only train the SR module to get high-resolution generations
at 5122, with the following objective:

LSR =λgeoLgeo(ϕ
SR) + λcolLcol(ψ

SR)

+ λradLrad(fg, fc, ω) + λentropyLentropy

In this step, we load, resize, and fine-tune the tri-plane fea-
tures saved during the training of the base diffusion module.
We use bilinear interpolation to scale the saved tri-planes
from 1282 to 5122.
Warm-up training. Training the entire system is challeng-
ing due to the intricate interdependencies between different
modules. Specifically, optimizing diffusion model is less ef-
fective when tri-plane f(·) in Eqn. 1 is far from convergence,
but learning fg with rotation θ needs a reasonably function-
ing diffusion model. Therefore, we warm up the model on
clean and well-aligned data for the first 1/50 of the total it-
erations. It also defines a universal canonical pose for all
objects. After that, we continue the training on all datasets
with a learnable rotation parameter θ using the algorithm
described in Sec. 3.2.



2. Experiment Details
2.1. Direct Text-to-3D Generation

We warm up our model on OmniObject3D [9] and a split
of ShapeNet [3], which contain 6342 objects spanning 216
categories. Then we train our full model on Objaverse [5]
that contains 800K+ objects.
Hyperparameters. We first train our base model for 2M
iterations with a batch size of 256. Then the SR module
is trained for 500K iterations with a batch size of 32. Both
module are trained on 32 A100 GPUs. We set the number of
channels for tri-plane features C = 6, and train a diffusion
model with 1000 diffusion steps with linear noise schedule
to generate the tri-plane features. During inference we sam-
ple 50 diffusion steps. The latent base learning rate is 1e−2

for all experiments. The learning rates for both geometry
and color diffusion models are set to 1e−4, and the learning
rate for NeRF auto-decoder is set to 1e−3. λgeo = λcol = 5,
λrad = 20, and λentropy = 0.1. We update the tri-plane re-
constructions from multi-view images 16 times per iteration
for the initial 200K training iterations, and once per iteration
for the subsequent training iterations. The latent base learn-
ing rate is reduced by a factor of 0.5 after 500K iterations
and by a factor of 0.1 after 1M iterations.

2.2. Single-class 3D Generation

We reduce our model size to 135M parameters for a fair
comparison with SSDNeRF [4] (122M). We also remove
the prompt condition and train a separate model on each
category following the baselines.
Hyperparameters. All models are trained for 500K itera-
tions on 8 A100 GPUs, utilizing a batch size of 64. No SR
plug-in is trained during these experiments. For cars and
tables, the latent base learning rate is set to 4e−2. In the
case of chairs, the latent base learning rate is set to 5e−3.
The remaining hyperparameters align with those specified
in direct text-to-3D generation.

2.3. Improving DreamFusion with 3D Prior

In our experiments, we sample [animal] from 14 ani-
mal types: bear, corgi, dog, bird, cat, pig, elephant, horse,
sheep, zebra, squirrel, chimpanzee, tiger, lion.
Criterion for successful generation. We consider a text-
to-3D generation successful when both the generated geom-
etry and texture are consistent. Consistent geometry implies
the correct number of parts is generated without missing or
extra ones. Consistent texture implies the generated texture
contains a consistent and plausible pattern that may appear
on an actual animal of that type, regardless of the geometry.
Hyperparameters. For DreamFusion and DIRECT-3D, we
run 10K iterations of optimization using the Adam opti-
mizer [10] with a learning rate of 5 × 10−3. Perp-Neg [1]
is enabled for the 2D diffusion guidance with wneg = −4
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Figure 2. Comparison of generated objects with and without
the 3D super-resolution plug-in. Please zoom in for better visu-
alization.

for all methods, which we found useful to reduce incorrect
textures such as multiple head textures. We set the weight
of the 3D prior SDS loss provided by DIRECT-3D to 0.01.
The classifier-free guidance is set to 100 as suggested in
DreamFusion [8]. We use a coarse-to-fine training process
for all methods, starting from a spatial resolution of 642 for
the first 5K iterations and increasing to 1282 afterward. The
remaining hyperparameters are set to the default values.

3. Additional Experiments
3.1. Ablation on the Super-resolution Module

We employ an additional 3D super-resolution plug-in to en-
hance the resolution from 1283 to 2563. Fig. 2 compares the
generated objects with and without the SR plug-in, demon-
strating its effectiveness in producing high-resolution ob-
jects with reduced computational resources. However, it’s
worth noting that the SR plug-in may slightly alter the
generated low-resolution objects and introduce additional
noise.

3.2. Ablation on 3D Prior Loss Weight

We also study the impact of different 3D prior loss weights.
Ablation in Fig. 3 shows that utilizing only DIRECT-3D as
initialization can alleviate the Janus problem, but also re-
sults in many artifacts, while large weights could compro-
mise the quality of the generated geometry (e.g., missing
rear feet in this case).

3.3. Additional Qualitative Examples

We provide additional qualitative comparisons here.
Specifically, Fig. 4 provides qualitative comparison with
EG3D [2] and SSDNeRF [4] on single-class 3D generation.
Fig. 5 provides additional comparisons with Shap-E [7] on
direct text-to-3D generation, using the same text prompts
as in Shap-E. Fig. 6 provides additional qualitative results



Figure 3. Ablation of 3D prior loss weight.

on using DIRECT-3D as a 3D prior to improve 2D-lifting
text-to-3D methods such as DreamFusion [8].

4. Limitations
While DIRECT-3D consistently produces high-quality re-
sults and surpasses previous methods in single-class 3D
generation and direct text-to-3D synthesis, it does exhibit
certain limitations. First of all, despite the abundant ge-
ometry information provided by large-scale 3D datasets, a
significant proportion of them lacks realistic textures. Addi-
tionally, the synthetic-to-real gap still persists, even for ob-
jects with nice and detailed textures. Therefore, training a
3D generative model, such as DIRECT-3D, solely on these
extensive 3D datasets may result in a lack of appearance in-
formation for specific objects. One potential solution is to
further fine-tune our color diffusion model on real images,
which we leave for future exploration.

Secondly, the current model demonstrates limitations in
compositionality. Although DIRECT-3D can generate mul-
tiple objects with close relations, such as “a house with a
garden”, it struggles to generate novel combinations like
“an astronaut riding a horse”. This issue is also observed
in previous methods such as Shap-E [7]. We attribute this
limitation to two main factors: (1) The scarcity of multiple
objects in a single CAD model contributes to the difficulty
of generating diverse objects within one tri-plane. Unlike
2D images, where multiple objects are commonly present,
most 3D CAD models consist of either a single object or
two or three highly related objects. (2) Current 3D datasets
are still orders of magnitude smaller than their 2D coun-
terparts, resulting in insufficient training data to effectively
learn novel compositionality.
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(a) EG3D

(b) SSDNeRF

(c) Ours

Figure 4. Qualitative comparison on ShapeNet SRN Cars. Baseline results come from the original paper of SSDNeRF [4]. Following
the baseline methods, we generate and render images at 1282.



Figure 5. Qualitative comparison with Shap-E [7]. All text prompts are sourced from the original paper of Shap-E. For Shap-E, we
use the official code and model with the default random seed. For our method, we generate objects in 1282 without the super-resolution
plug-in. All images of both methods are rendered at 2562. Our DIRECT-3D generates 3D objects with enhanced quality in both geometry
and texture.
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Figure 6. More qualitative results on using DIRECT-3D as a 3D prior for 2D-lifting methods. Our 3D prior alleviates issues such as
multiple faces and missing/extra limbs, while also improving texture quality. Please also check the video demos for a better visualization.
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