
Supplementary Material for
“ Decentralized Directed Collaboration for Personalized Federated Learning ”

In this part, we provide supplementary materials including more introduction to the related works, experimental details and
results, and the proof of the main theorem.
• Appendix A: More details in the related works.
• Appendix B: More details in the client selection.
• Appendix C: More details in the experiments.
• Appendix D: Proof of the theoretical analysis.

A. More Details in the Related Works
Decentralized/Distributed Training. Decentralized/Distributed Training, which allows edge clients to communicate with
each other in a peer-to-peer manner, is an encouraging field that shares several benefits: (1) guarantees collaborative learning
through local computation and the exchange of model parameters; (2) is low for feeding the models of adjacent clients, gener-
ating a more intelligent private model; (3) avoids central failure in the collaborative system. Thus, Decentralized/Distributed
Training has been applied in many fields[5]: (1) Healthcare [45], favoring the decentralization of clinical records and collab-
orative diagnosis; (2) Mobile Services [61], decreasing response times and increasing the bandwidth of constraints devices;
(3) Vehicles [71], ensuring high mobility and local storage management.

Since the prototype of DFL (fully decentralized federated learning [28]) was proposed, it has been a promising approach
to save communication costs as the compromise of CFL. By combining SGD and gossip, early work achieved decentralized
training and convergence in [6]. D-PSGD [38] is the classic decentralized parallel SGD method. FastMix [68] investigates
the advantage of increasing the frequency of local communications within a network topology, which establishes the optimal
computational complexity and near-optimal communication complexity. DeEPCA [67] integrates FastMix into a decen-
tralized PCA algorithm to accelerate the training process. DeLi-CoCo [18] performs multiple compression gossip steps in
each iteration for fast convergence with arbitrary communication compression. Network-DANE [30] uses multiple gossip
steps and generalizes DANE to decentralized scenarios. QG-DSGDm [40] modifies the momentum term of decentralized
SGD (DSGD) to be adaptive to heterogeneous data, while SkewScout [21] replaces batch norm with layer norm. Meta-L2C
[36] dynamically updates the mixing weights based on meta-learning and learns a sparse topology to reduce communication
costs. The work in [73] provides the topology-aware generalization analysis for DSGD, they explore the impact of various
communication topologies on the generalizability.

B. More details in the client selection
Push sum based directed distributed averaging. The initial Push sum algorithm [26] considers the averaged consensus
1/n
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where P t ∈ Rn×n is the mixing matrix. Inspired by the Markov chains [51], the mixing matrices P t are designed to be
column stochastic (each column must sum to 1). So the gossip iterations converge to a limit y∞i = πi
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Directed random graph. We transfer the mixing matrices from column stochastic (all columns sum to 1) to row stochastic
(all rows sum to 1), meaning that the clients can actively select the information they need rather than passively accept, which
is more beneficial for directed collaboration in the DPFL problem. In the experiments, each client pulls the shared parameters
from its in-neighbors j ∈ N in

i,t , and “pulls a message” from itself as well. Recall that each client i can choose its mixing
weights (ith row of P t) independently of the other clients. So in order to provide more flexible collaboration and closer ties
for clients, we randomly choose the in-neighbors under the communication bandwidth limitation. We use uniform mixing
weights for the pulled models here, meaning that clients assign uniform model weights to all neighbors. So assuming that



each client can pull models with up to n neighbors, each row P t
i of P t has exactly n+ 1 non-zero entries, both of which are

equal to 1/(n+ 1). Thus, we get that

pti,j =

{
1/(n+ 1), j ∈ N in

i,t ;

0, otherwise.
(6)

Undirected random graph. For the undirected DPFL methods (i.e. DFedAvgM and Dis-PFL), we use a time-varying and
undirected random graph to represent the inter-client connectivity. Clients randomly choose their in-neighbors to pull the
shared models and push a message in return. We adopt these graphs to be consistent with the experimental setup used in
[14, 52, 56]. So the mixing matrics in the undirected graph is a symmetric doubly-stochastic (each row and each column
must sum to 1), which satisfies pti,j = ptj,i in Formula (6). Notably, the model communication bandwidth of in-neighbors in
DPFL is strictly limited as the same as the busiest server in CPFL.

C. More details in the experiments

In this section, we provide more details of our experiments including datasets, baselines, and more extensive experimental
results to compare the performance of the proposed DFedPGP against other baselines on the Tiny-ImageNet dataset. All our
experiments are trained and tested on a single Nvidia RTX3090 GPU under the environment of Python 3.8.5, PyTorch 1.11.1,
CUDA 11.6, and CUDNN 8.0.

C.1. More Details about Baselines

Local is the simplest method for personalized learning. It only trains the personalized model on the local data and does not
communicate with other clients. For the fair competition, we train 5 epochs locally in each round.
FedAvg [41] is the most commonly discussed method in FL. It selects partial clients to perform local training on each dataset
and then aggregates the trained models to update the global model. Actually, the local model in FedAvg is also the comparable
personalized model for each client.
FedPer [1] proposes a model decoupling approach for PFL, with a consensus representation and many local classifiers, to
combat the ill effects of statistical heterogeneity. We set the linear layer as the personalized layer and the rest model as the
base layer. It follows FedAvg’s training paradigm but only passes the base layer to the server and keeps the personalized
layer locally.
FedRep [13] also proposes a personalized model decoupling framework like FedPer, but it fixes one part when updating the
other. We follow the official implementation2 to train the head for 10 epochs with the body fixed, and then train the body for
5 epochs with the head fixed.
FedBABU [46] is also a model decoupling method that achieves good personalization via fine-tuning from a good shared
representation base layer. Different from FedPer and FedRep, FedBABU only updates the base layer with the personalized
layer fixed and finally fine-tunes the whole model. Following the official implementation3, it fine-tunes 5 times in our
experiments.
Ditto [37] achieves personalization via a trade-off between the global model and local objectives. It totally trains two models
on the local datasets, one for the global model (similarly aggregated as in FedAvg) with its local empirical risk, and one
for the personal model (kept locally) with both empirical risk and the proximal term towards the global model. We set the
regularization parameters λ as 0.75.
DFedAvgM [56] is the decentralized FedAvg with momentum, in which clients only connect with their neighbors by an
undirected graph. For each client, it first initials the local model with the received models then updates it on the local datasets
with a local stochastic gradient.
OSGP [2] is the directed version of DFedAvg, which allows clients to send the local models to their out-neighbors by a
directed graph. It is regarded as a representative of a personalized baseline over directed communication.
Dis-PFL [14] employs personalized sparse masks to customize sparse local models in the PFL setting. Each client first
initials the local model with the personalized sparse masks and updates it with empirical risk. Then filter out the parameter
weights that have little influence on the gradient through cosine annealing pruning to obtain a new mask. Following the
official implementation4, the sparsity of the local model is set to 0.5 for all clients.

2https://github.com/lgcollins/FedRep
3https://github.com/jhoon-oh/FedBABU
4https://github.com/rong-dai/DisPFL



C.2. Datasets and Data Partition

CIFAR-10/100 and Tiny-ImageNet are three basic datasets in the computer version study. As shown in Table 5, they are all
colorful images with different classes and different resolutions. We use two non-IID partition methods to split the training
data in our implementation. One is based on Dirichlet distribution on the label ratios to ensure data heterogeneity among
clients. The Dirichlet distribution defines the local dataset to obey a Dirichlet distribution (see in Figure 4a), where a smaller
α means higher heterogeneity. Another assigns each client a limited number of categories, called Pathological distribution.
Pathological distribution defines the local dataset to obey a uniform distribution of active categories c (see in Figure 4b),
where fewer categories mean higher heterogeneity. The distribution of the test datasets is the same as in training datasets. We
run 500 communication rounds for CIFAR-10, CIFAR-100, and 300 rounds for Tiny-ImageNet.

Table 5. The details on the CIFAR-10 and CIFAR-100 datasets.

Dataset Training Data Test Data Class Size

CIFAR-10 50,000 10,000 10 3×32×32
CIFAR-100 50,000 10,000 100 3×32×32

Tiny-ImageNet 100,000 10,000 200 3×64×64
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Figure 4. Heat-map of the Dirichlet split and Pathological split.

C.3. More Experiments Results on Tiny ImageNet

Comparison with the baselines. In Table 6 and Figure 5, we compare DFedPGP with other baselines on the Tiny-ImageNet
with different data distributions. The comparison shows that the proposed method has a competitive performance, especially
under higher heterogeneity, e.g. Pathological-10. Specifically in the Pathological-10 setting, DFedPGP achieves 49.16%, at
least 1.81% and 7.08% improvement from the CFL methods and DFL methods. However, in the Dirichlet-0.3 setting, almost
all the partial model personalized methods (i.e. FedPer, FedRep, DFedPGP except FedBABU) face a severe performance
degradation compared with the full model personalized methods (i.e. FedAvg, DFedAvgM, OSGP). This may account for
the low classification ability in partial model personalized methods without aggregation with neighbors in the multiple-image
classification tasks, especially in the long-tail data distribution scenario (i.e. Dirichelet-0.3). The original intention of our
design is to build a great personalized model through partial model personalization training and directed collaboration with
neighbors. So when the heterogeneity increases, our algorithms have a significant improvement.
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Figure 5. Test accuracy on Tiny-ImageNet with heterogenous data partitions.

Table 6. Test accuracy (%) on Tiny-ImageNet in both Dirichlet and Pathological distribution settings on Tiny-ImageNet.

Algorithm
Tiny-ImageNet

Dirichlet Pathological

α = 0.1 α = 0.3 c = 10 c = 20

Local 12.13±.13 5.42±.21 28.49±.16 16.72±.34

FedAvg 25.55±.02 17.58±.25 44.56±.39 34.10±.59

FedPer 21.64±.72 7.71±.08 47.35±.03 33.68±.33

FedRep 17.54±.79 5.78±.05 46.76±.73 31.15±.54

FedBABU 25.59±.08 18.18±.06 46.53±.20 37.01±.31

Ditto 21.71±.66 14.47±.14 40.65±.15 28.74±.38

DFedAvgM 24.42±.74 16.51±.68 41.94±.37 31.50±.46

OSGP 25.29±.26 17.07±.17 42.08±.43 30.58±.51

Dis-PFL 24.71±.18 16.94±.36 41.93±.12 33.57±.62

DFedPGP 25.71±.20 14.94±.44 49.16±.19 37.25±.27

Table 7. The required communication rounds when achieving the target accuracy (%) on Tiny-ImageNet.

Algorithm
Tiny-ImageNet

Dirichlet-0.1 Dirichlet-0.3 Pathological-10 Pathological-20

acc@20 speedup acc@14 speedup acc@40 speedup acc@30 speedup

FedAvg 160 1.11 × 144 1.47 × 192 1.36 × 172 1.50 ×
FedPer 123 1.45 × - - 103 2.53 × 134 1.93 ×
FedRep - - - - 116 2.25 × 117 2.21 ×
FedBABU 156 1.14 × 174 1.22 × 178 1.47 × 181 1.43 ×
Ditto 178 1.00 × 212 1.00 × 261 1.00 × - -

DFedAvgM 110 1.62 × 141 1.50 × 173 1.51 × 210 1.23 ×
OSGP 115 1.55 × 136 1.56 × 160 1.63 × 258 1.00 ×
Dis-PFL 143 1.24 × 166 1.28 × 227 1.15 × 188 1.37 ×

DFedPGP 74 2.41 × 108 1.96 × 54 4.83 × 53 4.87 ×

Convergence speed. We show the convergence speed of DFedPGP in Table 7 and Figure 5 by reporting the number of
rounds required to achieve the target personalized accuracy (acc@) on Tiny-ImageNet. We set the algorithm that takes the
most rounds to reach the target accuracy as “1.00×”, and find that the proposed DFedPGP achieves the fastest convergence
speed on average (3.51× on average) among the SOTA PFL algorithms. Direct communication guarantees flexible choice
of neighbors and closer ties between clients, which speeds up personalized convergence and achieves higher personalized
performance for each client. Also, the partial model personalization and alternate updating mode will both bring a comparable
gain to the convergence speed from the difference between DFedPGP and OSGP. Thus, our methods can efficiently train the



personalized model under different data heterogeneity.

C.4. More Details about hyperparameters selection

Here we detail the hyperparameter selection in our experiments. We fix the total communication rounds T, mini-batch size
and weight decay for all the benchmarks and our proposed DFedPGP. The other selections are stated as follows.

Table 8. General hyperparameters introductions.

Hyperparameter CIFAR-10/100, Tiny-ImageNet Best Selection

Communication Round 500 -
Batch Size 128 -

Weight Decay 5e-4 -
Momentum 0.9 -

Learning Rate Decay 0.9 -

Local Interval [1, 3, 5, 8] 5
Local Learning Rate [0.01, 0.1, 0.5, 1] 0.1

D. Proof of Theoretical Analysis
D.1. Preliminary Lemmas

Lemma 1 (Local update for personalized model vi in DFedPGP, Lemma 23 [47]). Consider F which is L-smoothness
and fix v0 ∈ Rd. Define the sequence (vk) of iterates produced by stochastic gradient descent with a fixed learning rate
ηv ≤ 1/(2KvLv) starting from v0, we have the bound
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where we used a) the inequality 2αβ ≤ α/K + Kβ for reals α, β,K; b) L-smoothness of F , and c) the condition on the
learning rate ηv ≤ 1/(2KvLv). Let A = Kvη
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Using the bound (1 + 2/Kv − 1)Kv−1 ≤ e2 < 8 for Kv > 1, we have:
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Lemma 2 (Local update for shared model ui in DFedPGP). For all clients i ∈ {1, 2, ...,m} and local iteration steps
k ∈ {0, 1, ...,Ku − 1}, assume that assumptions 2-4 hold and define ∇uFi(z
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where we use Assumption 3, 4 and L-smoothness in the last inequation.
In addition, according to line 11 of Algorithm 1, we can obtain E∥zt,ki − zti∥2 = 1
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where we use the inequality (1 + 1
Ku−1 )

Ku ≤ 5 holds for any Ku > 1 in the last equation. Summing up from i = 1 to m,
then we complete the proof.

Lemma 3 (Mixing connectivity [3]). Suppose the time-varying communication topology is strongly connected. It holds for
∀i ∈ {1, · · · ,m} and t ≥ 0 that
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Proof. Suppose that Assumption 1 holds. Let λ = 1 − nD−(Ku+1)∆B and let q = λ1/((Ku+1)∆B+1). Then there exists a
constant C, it satisfies
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To unfold the stochastic gradient item, we get
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where a) uses Lemma 2. Focusing on the last term we have:
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ū].
(17)

Substituting Formula (17) and (16) into (15), then squaring both sides and taking expectations, we have
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(18)

where a) uses < x, y >≤ 1
2∥x∥

2 + 1
2∥y∥

2.
Move E∥ūt − zti∥2 to the left side of the inequality and assume ∥u0

i ∥ = 0 and 0 < ηu < δ
4
√
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, then we have
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Summing up from i = 1 to m, then we complete the proof.



D.2. Proof of Convergence Analysis

Proof Outline and the Challenge of Dependent Random Variables. We start with

F
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ūt+1, V t+1

)
− F

(
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. (20)

The first line corresponds to the effect of the v-step and the second line to the u-step. The former is

F
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)
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=
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(21)

It is easy to handle with standard techniques that rely on the smoothness of F (ut, ·). The latter is more challenging. In
particular, the smoothness bound for the u-step gives us

F
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D.2.1 Proof of Convergence Analysis for DFedPGP

Analysis of the u-Step.
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Where a) uses E
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Meanwhile, for T2,u,
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where we use Assumption 3, 4 and L-Smoothness in a). Based on the analysis above, we have:
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ū]

+
(kuL2

uηu
2

AA+
5KuLuη

2
u

2

[
1 +

32KuL
2
uη

2
u

δ2
(L2

uAA+ 1) + L2
uAA

])(
σ2
u + σ2

g

)
.

(26)

Analysis of the v-Step.
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For T1,v ,
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where a) and b) is get from the unbiased expectation property of ∇vFi(u
t
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i ; ξi) and < x, y >≤ 1

2 (∥x∥
2 + ∥y∥2), respec-

tively.
For T2,v , according to Lemma 1, we have
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For T3,v , according to Lemma 3, we have
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After that, summing Formula (28), (29) and (30), we have
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Obtaining the Final Convergence Bound.
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Summing from t = 1 to T , assume the local learning rates satisfy ηu = O(1/LuKu

√
T ), ηv = O(1/LvKv

√
T ), F ∗

is denoted as the minimal value of F , i.e., F (ū, V ) ≥ F ∗ for all ū ∈ Rd, and V = (v1, . . . , vm) ∈ Rd1+...+dm . Assume
C2 ≪ (1− q)2T , then unfold AA, we can generate
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Combining χ := max{Luv, Lvu}
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LuLv in Assumption 2 and assume that
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Then, we have the final convergence bound:
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