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In the supplementary material, we offer the formulation
of NR-IQA metrics (Sec. 3.1), detailed proofs of the finite
difference in Eq. (6) (Sec. 4.2), additional implementation
details (Sec. 5.1), further robustness analysis (Sec. 5.2), and
supplementary ablation study results (Sec. 5.5). Addition-
ally, we present more visualization results.

S1. Formulations of RMSE, SROCC, KROCC,
PLCC and R Robustness

In this section, we will introduce IQA-specific metrics
RMSE, SROCC, KROCC, PLCC, and R robustness men-
tioned in Sec 3.2.

RMSE measures the difference between MOS values
and predicted scores, which is represented as

RMSE =

√√√√ 1

N

N∑
i=1

(yi − fi)2. (S1)

In this equation, N is the number of images. yi and fi rep-
resent the MOS and predicted score of the ith image, re-
spectively. The smaller the RMSE value is, the smaller the
differences between the two groups of scores.

SROCC measures the correlation between MOS values
and predicted scores to what extent the correlation can be
described by a monotone function. The specific formulation
is as follows:

SROCC = 1−
6
∑N

i=1 d
2
i

N(N2 − 1)
, (S2)

where di denotes the difference between orders of the ith

image in subjective and objective quality scores. The closer
the SROCC value is to 1, the more consistent the ordering
is between two groups of scores.

KROCC measures the degree of concordance in the
ranking of MOS values and predicted scores. The formu-
lation is:

KROCC =
2(Ncon −Ndis)

N(N − 1)
. (S3)

In this equation, Ncon and Ndis represent the number of im-
age pairs in the test dataset with consistent and inconsistent

ranking of subjective and objective quality scores, respec-
tively. The closer the KROCC value is to 1, the more con-
sistent the ordering is between two groups of scores.

PLCC measures the linear correlation between MOS
values and predicted scores, which is formulated as

PLCC =

∑N
i=1(yi − ȳ)(fi − f̄)∑N

i=1(yi − ȳ)2(fi − f̄)2
,
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1

N
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1

N

N∑
i=1

fi.

(S4)

The closer the PLCC value is to 1, the higher the positive
correlation between the two groups of scores.

R robustness was recently proposed by Zhang et al. [8].
It takes the maximum allowable change in quality predic-
tion into consideration:

R =
1

N

N∑
i=1

log

(
max{β1 − f(xi), f(xi)− β2}

|f(xi)− f(x′
i)|

)
, (S5)

where N is the number of images, xi is the ith image to
be attack, x′

i is the attacked version of xi. f(·) is the IQA
model for quality prediction. β1 and β2 are the maximum
MOS and minimum MOS among all MOS values. A larger
R value means better robustness.

S2. Proof of Eq. (6)
Eq. (6) in the main context illustrates how to approximate
the ℓ1 norm of ∇xf(x) by the finite difference, which is
expressed as

∥∇xf(x)∥1 ≈
∣∣∣∣f(x+ h · d)− f(x)

h

∣∣∣∣ .
In this formula, h is a small step size and d =
sign(∇xf(x)). We provide a proof of this approximation
in this section.

Proof. We expand f(x+ h · d) at point x by the first order
Taylor estimation, i.e.,

f(x+ h · d) ≈ f(x) + h · ∇xf(x)
T d. (S6)
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Since d = sign(∇xf(x)), we have

∇xf(x)d = ∥∇xf(x)∥1. (S7)

Therefore,

f(x+ h · d) ≈ f(x) + h∥∇xf(x)∥1, (S8)

and ∥∇xf(x)∥1 can be approximated by∣∣∣∣f(x+ h · d)− f(x)

h

∣∣∣∣ . (S9)

S3. Experimental Settings

In Sec. 5.1 in the main manuscript, part of the experimental
settings are reported. In this section, we report the exper-
imental environment and detailed experimental settings in
our experiments.

S3.1. Experimental Environment

We conducted all the training, test, and attack on an
NVIDIA GeForce RTX 2080 GPU with 11GB of memory.

S3.2. Training Settings

For the four NR-IQA models considered in our study,
namely, HyperIQA [5], DBCNN [7], LinearityIQA [3], and
MANIQA [6], we used publicly available code provided by
their respective authors to train these models on the same
training dataset.

Due to the memory requirements associated with ap-
proximating the ℓ1 norm, the batch size used for training
the NR-IQA models had to be adjusted to prevent memory
overflow. Other training settings are shown in Table S1.
To ensure consistency and fairness in our comparisons, the
same setting is utilized when training both the baseline and
NT versions of each NR-IQA model.

Table S1. Detailed training settings for NR-IQA models and their
NT versions. “Patches per Image” is marked as “-” if the input of
the model is the whole image

Model Architecture
Input
Size

Patches
per Image

Batch
Size

Training
Epochs

HyperIQA /
HyperIQA+NT

ResNet50 224×224 25 16 16

DBCNN /
DBCNN+NT

VGG and
Its Variant

500×500 - 6 50

LinearityIQA /
LinearityIQA+NT

ResNet34 498×664 - 4 30

MANIQA /
MANIQA+NT

ViT-B/8 224×224 20 1 30

S3.3. Normalization of MOS

In our selected 4 NR-IQA models, MANIQA [6] is a spe-
cial NR-IQA model in which MOS is scaled to the range
of [0, 1], and it leads to the predicted score in the range of
[0, 1]. Furthermore, the different scales of MOS in different
NR-IQA models result in a difference in the RMSE metric.

For a fair comparison across different NR-IQA models,
we normalize the MOS into the range [0, 100]. The normal-
ization formula is depressed as follows:

MOSn =
MOS − Smin

Smax − Smin
× 100. (S10)

In this formula, Smin and Smax represent the minimal and
maximal MOS of the training data, respectively. In this pa-
per, Smin = 3.42 and Smax = 92.43.

S4. (I-)FGSM for NR-IQA Tasks
We mention the FGSM attack in Sec. 5.1 in the main
manuscript. We will introduce the details of the setting of
the FGSM attack in this section. FGSM [1] is first pro-
posed for classification tasks, which is concise and effi-
cient in attacking classification models. In our paper, we
perceive FGSM as a white-box attack for NR-IQA models
with a redesigned loss function. We will first introduce the
FGSM attack in classification tasks and then the FGSM at-
tack adapted to NR-IQA models below.

In the context of classification, FGSM is a straightfor-
ward non-iterative attack method, which is expressed as fol-
lows:

xadv = x+ ϵ sign(∇xL(f(x), y)). (S11)

In this equation, xadv represents the adversarial example,
x is the original image, ϵ denotes the ℓ∞ norm bound of
perturbations, L is the loss function, f(·) signifies the neural
network function, and y represents the true label of x. A
common use of L is cross-entropy loss.

I-FGSM is an iterative extension of FGSM, which is de-
scribed as follows:

xk
adv = Πϵ

{
xk−1

adv + α sign(∇xL(f(x), y))
}
, (S12)

where k is the current iteration step and α is the step size,
the total number of iteration steps is K. The operator Πϵ

projects the adversarial examples onto the space of the ϵ
neighborhood in the ℓ∞-ball around x.

In the NR-IQA task, we take y as the predicted score of
the clean image x. In this paper, we choose the optimization
object according to the predicted score of the image and
define the loss function L as follows:

L(f(x), y) ≜ Lmid =

{
f(x), y ⩽ 50,

−f(x), y > 50,
(S13)



where f(x) represents the predicted score of the attacked
image. The object is to maximize the predicted score for a
low-quality image, thereby misleading the IQA model into
assigning a high score to the adversarial example. Con-
versely, for a high-quality image, the goal is to minimize
the predicted score to generate effective adversarial exam-
ples.

There is an interesting observation emerged from the ex-
periment. We find that the choice of the loss function L
has a significant impact on the efficacy of the FGSM attack.
Specifically, we also try the mean absolute error loss:

L(f(x), y) ≜ Lmae = |f(x)− y|, (S14)

and the mean squared error loss:

L(f(x), y) ≜ Lmse = (f(x)− y)2. (S15)

Taking the DBCNN as an example, we report the RMSE,
SROCC, PLCC, and KROCC after the FGSM attack with
different loss functions in Table S21 where ϵ = 0.005. It
is obvious that the effect of the FGSM attack is notably
diminished when the loss function is Lmae or Lmse. Espe-
cially when the mean absolute loss Lmae is used, the changes
of RMSE, SROCC, PLCC, and KROCC for all models are
very minimal.

Investigating the relationship between the loss function
and the ability of attacks is an interesting domain of re-
search.

Table S2. The attack ability of the FGSM attack with different loss
functions. Bold denotes better value in a column

MOS & Predicted Score After Attack

RMSE↑ SROCC↓ PLCC↓ KROCC↓

Lmae 10.0734 0.8994 0.8844 0.7177
Lmse 24.354 0.2795 0.2092 0.2096
Lmid 36.758 -0.318 -0.383 -0.146

Predicted Scores Before & After Attack

RMSE↑ SROCC↓ PLCC↓ KROCC↓

Lmae 13.0829 0.754 0.705 0.6065
Lmse 14.5819 0.6351 0.5886 0.4689
Lmid 32.778 -0.333 -0.418 -0.071

S5. Hyperparameters of Attacks
In Sec. 5 in the main manuscript, 4 attack methods are uti-
lized. For each attack method, there are hyperparameters
which affect the strength of the attack. Table S3 summa-
rizes the chosen hyperparameters in tested attack methods
in the main experiment, i.e., experiments in Sec. 5.

1As for attack methods, larger RMSE and smaller SROCC, KROCC,
PLCC represents stronger attack ability.

Table S3. Hyperparameters of attacks

Method Hyperparameters

FGSM one step, ϵ = 0.005, α = 0.01
Perceptual Attack constraint: SSIM, weight =1,000,000
UAP∗ scale = 0.04
Kor.∗ Attack learning rate: 0.2

The meaning of these hyperparameters is explained in
the original papers of attacks: FGSM [1], Perceptual at-
tack [8], UAP [4] and Kor. attack [2].

S6. Further Robustness Analysis
In this section, we will further analyze the effectiveness of
the NT strategy in improving the robustness of NR-IQA
models. In Sec. S6.1, we present the robustness of base-
line models and their NT-enhanced versions measured by
KROCC, PLCC, and R robustness [8]. In Sec. S6.2, we
report the average metrics of RMSE and SROCC improve-
ment for both baseline models and their NT-enhanced ver-
sions. For each model, we provide the scatter plots of
predicted scores before and after the perceptual attack in
Sec. S6.3, which intuitively show the effectiveness of the
NT strategy.

S6.1. Robustness in Terms of KROCC, PLCC and
R Robustness

In Sec. 5.2 in the main manuscript, the robustness perfor-
mances in terms of RMSE and SROCC are reported. Ta-
ble S4, Table S5 and Table S6 show the robustness per-
formances of NR-IQA models in terms of KROCC, PLCC,
and R robustness against different attack methods, respec-
tively. Specifically, We evaluate R robustness on four
baseline methods as well as their NT-trained models with
β1 = 100, β2 = 0.

In Table S4, NR-IQA models with the NT strategy
outperform their baseline models under all attacks when
KROCC is measured between predicted scores before and
after attacks. Among them, HyperIQA+NT witnesses a
larger improvement in KROCC compared to its baseline un-
der the FGSM attack, with KROCC increasing from 0.043
of HyperIQA to 0.806 using the NT strategy. Meanwhile,
MANIQA demonstrates strong robustness against the Per-
ceptual Attack, achieving a KROCC (scores before and af-
ter the attack) value of 1. This means Perceptual Attack
could not change the rank order of predicted scores before
and after the attack on MANIQA. This phenomenon is also
observed in the results of SROCC robustness.

In Table S5, NR-IQA models with the NT strategy per-
form better than their baseline models in most cases when
PLCC is measured between predicted scores before and af-
ter attacks. For example, when the attack method is the



Table S4. The KROCC↑ metric of NR-IQA models against attacks (with “baseline
/

baseline+NT”). Bold denotes better value in a cell

MOS & Predicted Score After Attack Score Before Attack & Score After Attack

HyperIQA
base / +NT

DBCNN
base / +NT

LinearityIQA
base / +NT

MANIQA
base / +NT

HyperIQA
base / +NT

DBCNN
base / +NT

LinearityIQA
base / +NT

MANIQA
base / +NT

FGSM 0.020
/

0.610 -0.146
/

0.136 -0.197
/

-0.184 0.296
/

0.584 0.043
/

0.806 -0.071
/

0.217 -0.156
/

-0.171 0.332
/

0.749
Perceptual 0.627

/
0.669 -0.079

/
0.471 0.350

/
0.415 0.870

/
0.876 0.837

/
0.997 -0.091

/
0.628 0.440

/
0.566 1.000

/
1.000

UAP∗ 0.548
/

0.628 0.510
/

0.568 0.526
/

0.543 0.578
/

0.651 0.634
/

0.797 0.643
/

0.708 0.664
/

0.694 0.766
/

0.871
Kor.∗ 0.614

/
0.615 0.678

/
0.669 0.585

/
0.587 0.637

/
0.658 0.724

/
0.777 0.874

/
0.895 0.777

/
0.786 0.790

/
0.850

Table S5. The PLCC↑ metric of NR-IQA models against attacks (with “baseline
/

baseline+NT”). Bold denotes better value in a cell

MOS & Predicted Score After Attack Score Before Attack & Score After Attack

HyperIQA
base / +NT

DBCNN
base / +NT

LinearityIQA
base / +NT

MANIQA
base / +NT

HyperIQA
base / +NT

DBCNN
base / +NT

LinearityIQA
base / +NT

MANIQA
base / +NT

FGSM -0.009
/

0.801 -0.383
/

0.251 -0.497
/

-0.387 0.599
/

0.861 0.042
/

0.926 -0.418
/

0.196 -0.569
/

-0.439 0.535
/

0.929
Perceptual 0.830

/
0.868 -0.030

/
0.585 0.487

/
0.528 0.696

/
0.691 0.937

/
1.000 -0.005

/
0.719 0.522

/
0.582 0.998

/
0.995

UAP∗ 0.733
/

0.817 0.701
/

0.776 0.694
/

0.729 0.766
/

0.837 0.826
/

0.943 0.811
/

0.884 0.805
/

0.876 0.928
/

0.978
Kor.∗ 0.801

/
0.806 0.875

/
0.868 0.774

/
0.774 0.838

/
0.856 0.875

/
0.933 0.972

/
0.980 0.914

/
0.933 0.942

/
0.969

Percepural Attack, the PLCC of DBCNN is -0.005 while
the PLCC of DBCNN+NT is 0.719. The only exception
is MANIQA where MANIQA+NT performs worse than
MANIQA when attacked by the Perceptual Attack. This
trend is consistent with the results reported in RMSE ro-
bustness.

From Table S4 and Table S5, we can conclude that the
robustness of NR-IQA models in terms of RMSE and PLCC
have similar trends, while robustness in terms of SROCC
and KROCC show similar patterns. Additionally, the ro-
bustness improvement caused by the NT strategy is more
obvious when NR-IQA models are attacked in white-box
scenarios than in black-box scenarios.

From Table S6, we can see that NR-IQA methods with
our NT strategy generally perform better than their base-
lines. However, it’s essential to note that the definition of R
robustness assigns a higher weight to images with extremely
large scores (close to β1) or extremely small scores (close
to β2), whereas RMSE treats each image equally. Conse-
quently, in scenarios where the DBCNN model is attacked
by Kor. attack, the NT model shows improvement in the
RMSE metric but a decrease in the R robustness compared
to its baseline. Similar trends are observed when the Linear-
ityIQA model is attacked by UAP. Although different met-
rics focus on different aspects, the proposed NT strategy
improves all robustness metrics in most cases.

S6.2. Averaged Metrics of RMSE and SROCC Im-
provement

For an NR-IQA model subjected to an attack method, we
calculate the difference in RMSE (or SROCC) between its
NT version and the original model, denoted as ∆RMSE

Table S6. The R ↑ robustness of NR-IQA models against attacks
(with “baseline

/
baseline+NT”)

HyperIQA
base / +NT

DBCNN
base / +NT

LinearityIQA
base / +NT

MANIQA
base / +NT

FGSM 0.659
/

1.099 0.328
/

0.671 1.011
/

1.389 2.957
/

3.864
Perceptual 2.249

/
3.047 0.938

/
2.076 1.011

/
1.398 5.492

/
4.784

UAP∗ 1.180
/

1.285 1.054
/

1.067 1.161
/

1.096 3.459
/

3.464
Kor.∗ 0.980

/
1.092 1.333

/
1.323 0.883

/
1.000 3.299

/
3.319

Table S7. Averaged ∆RMSE ↓/ averaged ∆SROCC ↑.

HyperIQA DBCNN LinearityIQA MANIQA

White -8.7595 / 0.4800 -31.5900 / 0.7465 -23.0075 / 0.0730 -4.4385 / 0.2250
Black -3.0215 / 0.0730 -2.5635 / 0.0280 -1.8895 / 0.0165 -0.6410 / 0.0400
Overall -5.8905 / 0.2765 -17.0768 / 0.3873 -12.4485 / 0.0448 -2.5398 / 0.1325

(or ∆SROCC). We then average ∆RMSE and ∆SROCC
for both white-box and black-box attacks, as shown in Ta-
ble S7, to corroborate Observation 4 presented in the main
manuscript. These results further confirm the effectiveness
of NT in mitigating both white-box and black-box attacks.

S6.3. Distributions of Predicted Scores

Figure S1–S4 illustrate the absolute differences between
predicted scores before and after various attacks for all test
images (from the first row to the last row: FGSM, Percep-
tual Attack, UAP, and Kor. attack). The fitted distribution is
presented on the right side of each image.

It is evident that all models trained with the NT strategy
exhibit smaller score changes compared to their correspond-
ing baseline models. Additionally, we observe an interest-
ing trend: the NT strategy enhances robustness for different



Pe
rc
ep
tu
al

U
A
P*

K
or
.*

FG
SM

HyperIQA DBCNN LinearityIQA MANIQA

Attacked NR-IQAModels

A
tta
ck
M
et
ho
ds

Figure S1. Comparison of four NR-IQA models with/without the NT strategy under the FGSM attack [1]. The absolute differences between
predicted scores before and after attack for all test images are presented, with the fitted distribution displayed on the right side.
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Figure S2. Comparison of four NR-IQA models with/without the NT strategy under the Perceptual attack [8]. The absolute differences
between predicted scores before and after attack for all test images are presented, with the fitted distribution displayed on the right side.
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Figure S3. Comparison of four NR-IQA models with/without the NT strategy under the UAP attack [4]. The absolute differences between
predicted scores before and after attack for all test images are presented, with the fitted distribution displayed on the right side.
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Figure S4. Comparison of four NR-IQA models with/without the NT strategy under the Kor. attack [2]. The absolute differences between
predicted scores before and after attack for all test images are presented, with the fitted distribution displayed on the right side.



Figure S5. The impact of λ to SROCC and RMSE on both unattacked images and adversarial examples.

NR-IQA models at various image quality levels.
For example, considering the Perceptual Attack, all

points for HyperIQA+NT closely align with the line “dif-
ference of predicted scores = 0”. This highlights the signifi-
cant effectiveness of the NT strategy in minimizing score
changes with small perturbations for HyperIQA. For the
DBCNN model, it is clear that the NT strategy brings about
more reduction in score changes for images with MOS be-
tween [0, 50) and [75, 100].

Conversely, in the case of LinearityIQA, the effective-
ness of the NT strategy is more obvious on high-quality im-
ages with MOS in [75, 100], while it proves more effective
on low-quality images with MOS in [0, 50] for MANIQA.
This discovery reflects that the NT strategy has varying im-
pacts on images with different quality levels, and these im-
pacts are closely tied to the NR-IQA models. Exploring the
enhancement of adversarial robustness in NR-IQA models
across different image quality levels represents a valuable
avenue for research. Such investigations can shed light on
the properties of NR-IQA models in predicting scores for
images of differing quality.

S7. Full Results of Ablation Studies
In Figure S5, we show the full results of the ablation study
of λ (mentioned in Sec. 5.5 in the main manuscript). Our
analysis focuses on two aspects of an NR-IQA model:
its performance on unattacked images and its robustness
against attacks. For the former, we utilize SROCC on
unattacked images across MOS values and predicted scores,
and for the latter, we employ the RMSE between predicted
scores before and after the FGSM attack.

As λ increases, the performance of baseline+NT models
has the following trend on unattacked images. SROCC val-
ues generally decrease with the rising λ, while RMSE val-

ues exhibit an upward trend (except for MANIQA). It is an
interesting observation that the RMSE value of MANIQA
fluctuates as λ changes, and the RMSE tends to decrease
with larger λ. When attacked by the FGSM attack, the
RMSE values of all baseline+NT models decrease consis-
tently with the increase of λ. Except for LinearityIQA,
the SROCC values of other models increase as λ becomes
larger. This implies that increasing λ tends to enhance the
robustness of NR-IQA models but leads to a performance
decline on unattacked images.

S8. Visualization Results
In this section, we present visualization results to illustrate
the effectiveness of the NT strategy under FGSM attack
with different attack intensities and UAP. Under FGSM at-
tack with different attack intensities, for each pair of base-
line and baseline+NT models, we provide two sets of visu-
alization results: one for high-quality images and the other
for low-quality images. We show the normalized MOS
of the original image. Under the UAP attack, we provide
one adversarial sample for an NR-IQA model. We dis-
play adversarial examples for both the baseline model and
the baseline+NT model, along with the corresponding score
changes (predicted score before attack → predicted score
after attack).

Figure S6 shows visualization results of FGSM attack
for HyperIQA, DBCNN, and their NT versions. Figure S7
displays visualization results of FGSM attack for Lineari-
tyIQA, MANIQA, and their NT versions. Figure S8 shows
visualization results of UAP attack for HyperIQA, DBCNN,
LinearityIQA, MANIQA, and their NT versions.

From Figure S6 and Figure S7, we can see that the im-
perceptibility of adversarial perturbations for images gets
worse as the attack intensity increases. However, de-
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Figure S6. (Zoom in for a better view) Visualization results of adversarial examples generated using the FGSM with different intensities.
The normalized MOS is presented. FGSM attack settings are indicated above the figures, and each adversarial example for a model is
presented with the format: “predicted score before attack → predicted score after attack” below the respective images. The SSIM between
the adversarial example and the original image is displayed at the bottom right corner of each adversarial image.
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Figure S7. (Zoom in for a better view) Visualization results of adversarial examples generated using the FGSM with different intensities.
The normalized MOS is presented. FGSM attack settings are indicated above the figures, and each adversarial example for a model is
presented with the format: “predicted score before attack → predicted score after attack” below the respective images. The SSIM between
the adversarial example and the original image is displayed at the bottom right corner of each adversarial image.
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Figure S8. (Zoom in for a better view) Visualization results of adversarial examples generated using the UAP attack. The normalized MOS
is presented. Each adversarial example for a model is presented with the format: “predicted score before attack → predicted score after
attack” below the respective images. The SSIM between the adversarial example and the original image is displayed at the bottom right
corner of each adversarial image.

spite this, the NT models consistently exhibit smaller score
changes than the baseline models in most cases. Consider
HyperIQA and its NT version as an example. When at-
tacked by the strongest FGSM attack (iter=10, eps=0.01),
the score change for HyperIQA+NT on the high-quality im-
age is 62.1−38.8 = 23.3, whereas the score change for Hy-
perIQA is 62.9− 9.6 = 53.3. Similarly, for the low-quality
image, the score change for the NT version is 49.8, while
the change for the baseline model is 55.4. From Figure S8,
we can see that with the same adversarial sample, baseline
and their NT versions have different defense performances.
For example, the score change for HyperIQA+NT on its ad-
versarial sample is 56.6− 42.2 = 14.4, whereas HyperIQA
on the same adversarial sample is 70.9− 54.4 = 16.5.
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