
Appendix

This appendix contains the following sections:
• Section A: Efficiency analysis.
• Section B: Impact of different data augmentation for

TTT (c.f. Section 4.2).
• Section C: TTT with depth supervision from depth predic-

tor.
• Section D: Further study on Naive TTT (TTT-N) strat-

egy (c.f. Section 4.2).
• Section E: Impact of the depth prediction loss weight λ (c.f.

Section 4.1).
• Section F: Sampling strategy for densely annotated videos:

DAVIS-16 [31] and SegTrackV2 [19].
• Section G: Extending DATTT to existing ZSVOS method.
• Section H: Additional visual results (c.f. Figure 6).

A. Efficiency analysis

When utilizing Mit-b1 [52] as our backbone, the parameters
in each component are distributed as follows: 26.30M for the
backbone, 0.53M for the segmentation head, 0.53M for the
depth head, and 1.05M for the depth-aware modulation layer.
Consequently, we introduce only a minimal number of addi-
tional parameters to the baseline model. The baseline model,
consisting of the backbone with the segmentation head, re-
quires 1.4 hours per epoch for training and 8 milliseconds
per frame for inference. In contrast, our full model, which
includes the baseline, the depth head, and the depth-aware
modulation layer, demands 1.5 hours per epoch for training,
9 milliseconds per frame for inference, and 49 milliseconds
per frame for TTT. The power consumption on the GPU is
recorded as 230W for training, 80W for inference, and 200W
for TTT, indicating that the additional computation cost to
the basic training and inference processes is minimal. While
the incorporation of TTT adds to the computational time,
it is an inherent drawback of the technique, and we strive
to mitigate its impact. It is worth noting that our proposed
strategy is significantly faster and more effective than the
naive strategy (c.f. Figure 5).

B. Impact of different data augmentation for
TTT

We apply random horizontal flipping, resizing, cropping,
and photometric distortion for data augmentation. In detail,
photometric distortion includes random brightness, contrast,
saturation, and hue. We further ablate the effect of each
type of augmentation on it. Table F shows that the proposed
method works well when removing any one kind of data
augmentation, which indicates that our success does not

DAVIS-16 FBMS Long.
- 77.1 73.7 65.2
w/o resize +0.5 +3.2 +7.7

w/o crop +0.4 +2.5 +7.5

w/o flip +0.4 +3.1 +7.2

w/o brightness +0.4 +2.9 +7.3

w/o contrast +0.7 +2.8 +7.3

w/o saturation +0.3 +2.9 +7.7

w/o hue +0.4 +2.8 +6.4

full +0.4 +3.2 +7.9

Table F. Impact of different data augmentation for TTT in
DAVIS-16 [31], FBMS [28], Long-Videos [20] datasets. J is
reported for comparison.

Depth Extractors Depth Supervision DAVIS-16 FBMS Long.
Monodepth2 [12] - 77.1 73.7 65.2

Consistent Depth +0.4 +3.2 +7.9

Pseudo Depth −1.4 +0.5 +2.9

LiteMono [57] - 76.8 79.0 68.1
Consistent Depth +2.0 +1.5 +6.3

Pseudo Depth +0.7 −0.1 −2.6

ZoeDepth [2] - 79.9 76.4 64.0
Consistent Depth +0.5 +4.7 +9.5

Pseudo Depth −0.4 +0.5 +1.9

Table G. TTT with depth supervision from depth predictor in
DAVIS-16 [31], FBMS [28], Long-Videos [20] datasets. J is
reported for comparison. Results that the dropped after TTT are
masked as red. ‘Consistent Depth‘ denotes self-supervised learn-
ing via consistent depth map prediction. ‘Pseudo Depth‘ denotes
supervised learning via pseudo depth map supervision.

come from any particular trick. Each type of augmentation
doesn’t affect the model significantly since it is used to create
a pair of samples for consistent depth map optimization.
Therefore, the proposed TTT strategy is the key to success.

C. TTT with depth supervision from depth pre-
dictor

We also experiment with pre-calculated depth maps for test-
time training. This means that instead of generating two
batches of images to minimize the distance between their
depth maps (‘Consistent Depth‘ in Table G), we predict one
batch of depth maps and calculate the error with the pseudo
depth maps (‘Pseudo Depth‘ in Table G). This process is
similar to the training-time training stage (c.f. Section 4.1),
but without the binary cross entropy for segmentation. As
shown in Table G, it brings less improvement and some-
times fails. This can be due to the model being explicitly
required to learn depth estimation and damaging its ability
to segmentation.



Method TTT-N DAVIS-16 FBMS Long. MCL STV2
J F J F J F J F J F

Baseline - 75.9 77.5 75.1 76.5 63.9 67.5 57.3 70.8 61.5 70.4
TENT [48] ✓ −0.2 −0.2 +0.2 +0.3 +0.4 +0.3 +0.7 +0.3 −0.1 −0.1

BN [36] ✓ −0.1 −0.1 +0.4 +0.6 +0.7 +0.4 +1.0 +0.8 +0.1 +0.1

TTT-Rot [39] - 75.3 76.2 75.4 77.2 59.1 62.8 57.7 70.5 66.4 73.3
✓ −0.1 −0.1 +0.1 +0.3 +0.8 +1.1 +1.0 +0.9 −0.4 −0.1

TTT-MAE [11] - 73.5 74.1 74.6 75.7 64.4 67.5 55.7 66.8 62.2 70.2
✓ −0.2 −0.1 −0.1 −0.1 +0.3 +0.2 +0.1 +0.2 +0.1 +0.1

Ours - 77.1 78.4 73.7 75.8 65.2 68.0 53.5 66.2 61.5 69.2
✓ +0.3 +0.3 +0.1 +0.3 +1.3 +1.5 +1.9 +1.5 +1.0 +1.2

Table H. Comparisons with state-of-the-art test-time training method on DAVIS-16 [31], FBMS [28], Long-Videos [20], MCL [17],
and SegTrackV2 [19] datasets. Results that the dropped after TTT are masked as red. The most significant improvement is marked as bold.

D. Further study on Naive TTT (TTT-N) strat-
egy

We compare with other TTT methods [11, 36, 39, 48] fol-
lowing the proposed TTT-LTV strategy (c.f. Section 4.2) and
show the result in Table 4 in the main paper. Here, we further
compare with them following the naive image-based TTT
strategy (c.f. TTT-N in Section 4.2). As shown in Table H,
other TTT methods can not obtain consistent improvement
in different datasets following the TTT-N strategy, which is
the same as in the TTT-LTV strategy. Although the improve-
ment of our method is not as obvious as that in the TTT-LTV
strategy, it is more stable than others. It demonstrates that
depth-aware test-time training is necessary in ZSVOS.

E. Impact of the depth prediction loss weight λ

We use a hyper-parameter λ to balance the two losses as
described in Equation 2. We choose different λ and find it
is important in learning depth-aware features. As shown in
Table I, a larger λ allows the model to learn stronger 3D
knowledge during the training-time training, which leads
to better results when the model is directly applied to the
test videos. However, the well-trained image encoder cannot
benefit from the proposed self-supervised task consistently
at test time. Finally, we choose λ = 0.1 since it performs
well both with and without TTT.

F. Sampling strategy for densely anno-
tated videos: DAVIS-16 [31] and Seg-
TrackV2 [19]

DAVIS-16 [31] and SegTrackV2 [19] are densely annotated,
while FBMS [28], Long-Videos [20], and MCL [17] are an-
notated once every few frames. We perform TTT frame-by-
frame on FBMS, Long-Videos, and MCL. As for DAVIS-16
and SegTrackV2, we first divide the video frames into 10
video clips, which means that the interval of consecutive

λ TTT DAVIS-16 FBMS Long.
1 - 77.5 75.4 65.5

✓ 76.7 72.4 67.4
0.1 - 77.1 73.7 65.2

✓ 77.5 76.9 73.1
0.01 - 76.1 73.8 64.6

✓ 76.7 77.9 72.6

Table I. Impact of the depth prediction loss weight λ in DAVIS-
16 [31], FBMS [28], Long-Videos [20] datasets. J is reported for
comparison. Results that the dropped after TTT are masked as red.
The best result is marked as bold.

Clip Nums DAVIS-16 STV2
- 77.1 61.5
1 −3.1 +2.8

5 −0.1 +3.1

10 +0.4 +4.4

20 +0.5 +2.6

Table J. Sampling strategy for densely annotated videos: DAVIS-
16 [31] and SegTrackV2 [19] datasets. J is reported for compari-
son. Results that the dropped after TTT are masked as red.

frames in each clip is 10, and then perform TTT by sampling
a single frame from each clip. As shown in Table J, the
performance may drop when performing TTT without the
sampling strategy. Conducting the sampling strategy allows
model training from more diverse input which helps to com-
bat overfitting. Similarly, Figure 5 in the main paper shows
that training too many epochs in the same frame may drop
the performance in sparsely annotated video.



DAVIS-16 FBMS Long.
Baseline 77.8 73.6 64.6
+ Ours Architecture 78.6 74.1 65.8
+ Ours TTT Strategy 78.8 78.2 71.7

Table K. Using HFAN [29] as the baseline model on DAVIS-
16 [31], FBMS [28], Long-Videos [20] for TTT. J is reported for
comparison.

G. Extending DATTT to existing ZSVOS
method

Our approach operates independently of other ZSVOS meth-
ods. For instance, we utilize HFAN [29] as the baseline
model for our DATTT approach. HFAN incorporates addi-
tional feature alignment modules for both appearance and
motion features. As demonstrated in Table K, our proposed
depth-aware architecture and TTT strategy each yield notice-
able enhancements.

H. Additional visual results
We provide more visual results similar to Figure 6 (main
paper) in Figure G. The pre-trained model struggles to han-
dle these videos at first, and then clear improvements are
observed after performing TTT. The proposed method works
well in both single-object and multi-object scenarios.
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Figure G. Additional visual results. The background in the results is dimmed for better visualization.
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